当前位置:主页 > 管理论文 > 城建管理论文 >

夏热冬冷地区外墙保温体系研究

发布时间:2018-07-26 11:41
【摘要】:我国经济的快速发展,带来全国城镇化规模的日益扩大以及人们对居住环境舒适性要求的提高,这些都是以消耗大量的能源为代价。建筑节能是国家节能减排的重要环节之一,而外墙保温可以提高建筑围护结构的保温隔热性能,降低建筑物能耗。本文结合夏热冬冷地区的气候条件特点和居民用能习惯,对居住建筑节能现状进行分析,重点研究各种外墙保温技术的适宜性;针对常见的不同居住建筑,运用热工计算方法,求得各自满足建筑节能设计规范的外墙保温体系;对居住建筑同时满足规范的不同保温体系进行经济性对比,得到不同建筑的最佳保温体系;并运用全寿命周期成本理论求解保温层的经济厚度。总而言之,本文旨在基于夏热冬冷地区的特征,研究适宜该地区不同建筑类型的墙体保温体系,主要内容包括: (1)针对保温材料的材性特点,分析国内常用墙体保温材料性能,同时针对建筑物火灾出现的一些问题,分析墙体保温材料防火方面的政策法规。 (2)分析国内外建筑节能技术以及墙体保温方面的应用情况,比较了几种外墙保温体系的优缺点与实用性,同时利用有限元分析软件ANSYS模拟不同保温体系的传热过程。 (3)不同建筑在不同保温体系下的适用性研究。选择不同的墙体材料及合适的保温材料,对建筑物围护结构热工计算,分析不同结构形式对应的热桥比范围下,符合规范要求的不同保温体系,以利于设计人员快速合理选取外墙保温体系及保温层厚度。 (4)结合具体的工程实例,进行不同的墙体保温方案设计,,利用建筑节能设计分析软件PBECA对其进行能耗模拟计算,验算是否满足居住建筑节能设计规范,然后分别进行成本分析,综合评价不同的节能方案。 (5)采用全寿命周期成本法对武汉地区不同外墙保温材料对应的保温层厚度进行优化计算,并分析不同保温技术对应的经济回收期。 研究结果表明,在保证外墙主体传热系数相等的条件下,夏热冬冷地区外墙保温体系保温效果依次为:外墙外保温、热桥处理型外墙自保温、外墙内保温、外墙自保温。外墙自保温和内保温体系的热桥效应比较明显,热桥处理型自保温不仅能够达到与外保温达到基本相同的保温效果,又能避免外保温内保温体系的各种弊端,应在夏热冬冷地区推广使用。从规范要求的传热系数限定指标考虑,别墅住宅因传热系数限值较小,应采用外墙外保温体系。高层建筑结构中的框架结构采用热桥处理型自保温和外保温均可满足,但热桥处理型自保温体系经济优势明显。剪力墙和框剪结构因热桥占墙体面积比例较大,若采用热桥处理型自保温体系则热桥处所需保温层较厚,而采用外保温时,保温层厚度基本30mm即可满足规范要求,推荐使用外保温体系。对采用外保温体系的居住建筑,运用全寿命周期成本分析理论,计算得到外墙保温层经济厚度及其经济回收期,除加气混凝土砌块墙体投资回收期需8年左右外,在其它墙体类型中都能在2~5年内收回成本,具有较好的经济效益。
[Abstract]:The rapid development of China's economy has brought about the expansion of the scale of urbanization and the improvement of the requirements for the comfort of the living environment. All these are at the expense of a large amount of energy. Building energy conservation is one of the important links of energy conservation and emission reduction in the country. In this paper, based on the characteristics of climate conditions in hot summer and cold winter areas and residents' energy habits, this paper analyzes the current situation of energy conservation in residential buildings and focuses on the suitability of various external wall insulation technologies. In view of the common different residential buildings, the thermal engineering calculation method is used to obtain the external wall insulation system which satisfies the design standards of building energy conservation. The optimum thermal insulation system of different buildings is obtained by comparing the different thermal insulation systems that meet the standard of residential buildings at the same time. The economic thickness of the insulation layer is solved by using the life cycle cost theory. In a word, the purpose of this paper is to study the wall protection of different building types in this area based on the characteristics of hot summer and cold winter areas. The main contents of the temperature system include:
(1) in view of the properties of thermal insulation materials, the performance of wall insulation materials in common use in China is analyzed. At the same time, some policies and regulations on the fire protection of wall insulation are analyzed in view of some problems of building fire.
(2) analyze the application of building energy saving technology and wall insulation at home and abroad, compare the advantages and disadvantages and practicability of several external wall insulation systems, and use the finite element analysis software ANSYS to simulate the heat transfer process of different thermal insulation systems.
(3) the applicability of different buildings under different thermal insulation systems. Selection of different wall materials and suitable thermal insulation materials, thermal calculation of building enclosure structure, analysis of different thermal insulation system corresponding to the range of heat bridge in different structure forms, in order to facilitate the designers to select the external thermal insulation system quickly and reasonably. The thickness of the insulation layer.
(4) combined with specific engineering examples, the design of different wall insulation schemes is carried out. The energy consumption simulation of the building energy saving design analysis software PBECA is used to calculate the energy consumption of residential buildings, then the cost analysis is carried out respectively, and the different energy saving schemes are evaluated.
(5) the total life cycle cost method is used to optimize the thermal insulation layer thickness corresponding to different external thermal insulation materials in Wuhan area, and the economic recovery period corresponding to different thermal insulation technology is analyzed.
The results show that, under the condition that the heat transfer coefficient of the outer wall is equal, the thermal insulation effect of exterior wall insulation system in the hot and cold winter and cold winter areas is followed by external thermal insulation, the heat bridge treated exterior wall self insulation, the exterior wall interior insulation and the self insulation of the exterior wall. The heat bridge effect of the exterior wall self insulation and the internal heat preservation system is more obvious, and the heat bridge treatment type is self thermal insulation. It can only achieve the same heat preservation effect with external heat preservation, and can avoid all kinds of defects of internal heat preservation system. It should be popularized in hot summer and cold winter area. Considering the limit index of heat transfer coefficient required by the standard, the villa housing should adopt external insulation system of exterior wall because of the limited heat transfer coefficient limit. The heat bridge treatment type self insulation and external insulation can be satisfied, but the economic advantage of the heat bridge treatment self insulation system is obvious. The shear wall and frame shear structure have a large proportion of the wall area because of the heat bridge. If the heat bridge treatment type self insulation system is used, the thermal insulation layer is thicker, and the thickness of the insulating layer is basically 30mm when the external insulation is used. The external insulation system is recommended and the external thermal insulation system is recommended. The economic thickness and economic recovery period of the external thermal insulation layer are calculated by using the life cycle cost analysis theory, and the recovery period of the aerated concrete block wall is 8 years or so, and all the other wall types can be in 2~5 years. The recovery cost has good economic benefit.
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TU111.41;TU551

【参考文献】

相关期刊论文 前10条

1 王庆一;美国建筑节能经验[J];节能与环保;2004年12期

2 李秀江;;建筑节能:徘徊了二十年的“能耗革命”[J];小康;2006年04期

3 孙军贤;;国内外墙保温系统发展方向浅析[J];建筑节能;2010年04期

4 郁文红;杨昭;;节能建筑复合墙体热桥的二维非稳态传热[J];工程建设与设计;2009年10期

5 沈致和;围护结构三维导热的有限元分析[J];合肥工业大学学报(自然科学版);2004年02期

6 顾同曾;欧洲三国建筑节能近况[J];建筑创作;2002年06期

7 李红梅,金伟良,叶甲淳,王有为;建筑围护结构的温度场数值模拟[J];建筑结构学报;2004年06期

8 吴新国;胡海军;贺成龙;;建筑围护结构节能设计及其应用[J];建筑经济;2011年06期

9 张喜明,旷玉辉,于立强;瑞典及我国建筑节能现状与发展[J];建筑热能通风空调;2001年02期

10 李兆坚;江亿;;我国广义建筑能耗状况的分析与思考[J];建筑学报;2006年07期

相关博士学位论文 前1条

1 于靖华;基于EETP指标的夏热冬冷地区居住建筑围护结构热工性能及经济性研究[D];湖南大学;2009年



本文编号:2145896

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/chengjian/2145896.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fd281***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com