小盘岭岩质高边坡施工过程监测及稳定性分析
[Abstract]:At present, our country is in the period of rapid development of economic construction. With the development of national economy, highway grade is getting higher and higher, high fill and deep excavation is inevitable, and the situation of building high grade highway under complex terrain condition is increasing day by day. Complex high rock slope is increasing day by day. Because rock high slope is easy to lose stability in construction, it not only causes a lot of economic losses, but also causes certain casualties, so it is of great practical significance to monitor the construction process and analyze the stability of rock high slope. Taking the Xiaopanling high rock slope of Jianxing Expressway in Liaoning Province as the engineering background, the failure types of rock slope, the factors affecting stability and the different modes of deformation and failure of different rock slopes are first summarized in this paper. Find out the main factors that affect the stability of Xiaopanling slope; Then the method of numerical simulation and field monitoring is used to study. Digital photogrammetry is used to collect, analyze and classify the structural surface information of slope. Then the information of structural plane is applied to discrete element software 3DEC to simulate the construction process of slope and to analyze the stability and predict the deformation. Then the deformation of the slope construction process is monitored with total station and level and compared with the prediction. After verifying that the numerical simulation prediction is in accordance with the actual situation on the spot, the excavation condition of the next grade slope is predicted, and the influence of different supporting schemes on the slope stability is studied, so as to optimize the slope support design scheme. The results show that the shear plastic zone appears in the Z direction of the excavation surface of the slope after the third stage slope excavation, but it is still stable, and the displacement vector of the second stage slope is obtained when the slope is excavated. The velocity vector is concentrated on the joint of Z direction 0-15m area of the slope body excavating surface, and the velocity vector increases gradually, and the slope appears local instability failure. During the excavation of the first stage slope, the displacement and velocity vectors continue to increase in most areas of the slope, and the overall instability of the slope occurs. According to the condition of the slope, the optimal layout scheme of monitoring points is put forward. The monitoring points are reduced from 20 to 12 in the direction of 0-15m along the slope, and the number of monitoring points is reduced from 20 to 12 in the 16-50m area. Through numerical simulation of the slope conditions of different design schemes, it is determined that the design of the fourth grade slope support needs no additional bolt, and the third stage slope lengthens the length of the anchor rod from 8 m to 12 m in the direction of 0-15 m along the line. Along the direction of 16-50m area lateral relaxation of bolting support distance from 2m to 5m; In order to ensure the safety of the project, reduce the difficulty of construction, ensure the economic and reasonable engineering measures.
【学位授予单位】:东北大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TU753
【相似文献】
相关期刊论文 前10条
1 张永荣;岩质高边坡稳定性的可靠性研究[J];勘察科学技术;2001年04期
2 刘小平;何志攀;周北;周才辉;;人工岩质高边坡稳定性的监测和分析[J];勘察科学技术;2006年05期
3 罗阳明;古松;王广弟;;成南高速公路岩质高边坡绿化实践[J];路基工程;2006年06期
4 冯玉波;李乃元;迟延智;刘晓彬;;岩质高边坡的锚固设计及其稳定性分析[J];岩土力学;2006年S2期
5 邱节;冯长征;;建筑岩质高边坡的加固与美化[J];岩土工程界;2007年06期
6 高倚山;;玉环电厂岩质高边坡稳定性及工程设计方案[J];武汉大学学报(工学版);2007年S1期
7 秦鹏;秦植海;;基于分形理论的岩质高边坡监测资料分析[J];水利水运工程学报;2008年03期
8 曹东伟;;岩质高边坡治理方案初探[J];有色金属设计;2008年03期
9 彭呈辉;李彰明;冯强;;邻近建筑物某岩质高边坡的稳定性分析与评价[J];广东土木与建筑;2009年11期
10 佘金萍;;岩质高边坡动力响应分析及其应用研究[J];科技资讯;2010年09期
相关会议论文 前10条
1 黄宏伟;;三峡船闸岩质高边坡开挖的变形时序动态预报[A];面向国民经济可持续发展战略的岩石力学与岩石工程——中国岩石力学与工程学会第五次学术大会论文集[C];1998年
2 胡昕;柯学;牛志强;郭葆;郑达;;某电厂岩质高边坡的变形破坏模式分析[A];第3届全国工程安全与防护学术会议论文集[C];2012年
3 高倚山;朱海骏;吴建;韩非;;湖北核电厂岩质高边坡稳定性研究与工程设计方案[A];和谐地球上的水工岩石力学——第三届全国水工岩石力学学术会议论文集[C];2010年
4 杨永兵;施斌;祁长青;;岩质高边坡治理与景观设计初探[A];2002年中国西北部重大工程地质问题论坛论文集[C];2002年
5 刘建东;陈征宙;汤国毅;;岩质高边坡稳定性分析的有限元方法[A];地质与可持续发展——华东六省一市地学科技论坛文集[C];2003年
6 唐军峰;唐雪梅;徐国元;;向家坝水电站进水口岩质高边坡随5·12汶川大地震响应的监测分析[A];第三届全国岩土与工程学术大会论文集[C];2009年
7 杜朋召;刘建;韩志强;徐华;;基于复杂结构精细描述的岩质高边坡稳定性分析[A];《岩土力学》vol.34 增刊1 2013[C];2013年
8 张雷;王洪江;叶勇;王孟渝;;复杂受力条件下岩质高边坡稳定性数值模拟[A];第八届全国工程地质大会论文集[C];2008年
9 陈祖煜;汪小刚;;岩质高边坡的加固技术[A];'98水利水电地基与基础工程学术交流会论文集[C];1998年
10 唐军峰;杨军;曾祥喜;熊建平;李学政;;马延坡顺层岩质高边坡变形机理研究[A];中国水力发电工程学会第四届地质及勘探专业委员会第二次学术交流会论文集[C];2010年
相关博士学位论文 前2条
1 陈鹏宇;岩质高边坡坡体结构特征分析与稳定性研究[D];中国地质大学;2015年
2 喻军华;岩质高边坡开挖与支护过程分析[D];浙江大学;2003年
相关硕士学位论文 前10条
1 薛康;动荷载作用下高速公路岩质边坡崩塌分析及滚石防护措施研究[D];石家庄铁道大学;2016年
2 卢海军;岩质高边坡开挖爆破动力响应规律及控制措施研究[D];云南大学;2016年
3 林久卿;某岩质高边坡的稳定性分析及锚固优化设计[D];广西大学;2016年
4 饶文杰;小盘岭岩质高边坡施工过程监测及稳定性分析[D];东北大学;2014年
5 宋永鹏;北京市丰台区千灵山岩质高边坡稳定性分析[D];中国地质大学(北京);2010年
6 石清华;城区岩质高边坡治理技术研究[D];重庆大学;2005年
7 朱颖超;建筑岩质高边坡稳定性智能诊断研究[D];重庆大学;2012年
8 万洪;岩质高边坡动力响应分析及其应用研究[D];武汉理工大学;2009年
9 付超;岩质高边坡开挖与支护分析[D];浙江大学;2002年
10 吴智慧;岩质高边坡开挖防护数值模拟分析[D];合肥工业大学;2010年
,本文编号:2314571
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/2314571.html