MBS在保障性商品房融资中的应用研究
发布时间:2018-04-12 00:38
本文选题:保障性商品房 + Logistic模型 ; 参考:《天津科技大学》2012年硕士论文
【摘要】:我国城市人口激增引起住房需求的膨胀,而目前住房方面的支出超出了普通收入家庭的支付能力。国家制定了一系列政策建立保障房,以满足人民居者有其屋的基本需求。然而资金的缺乏成为制约保障性住房建设的瓶颈问题。本文研究集社会保障福利性和货币支付商品性于一身的保障性商品房融资问题。 本文通过对住房抵押贷款证券化(MBS)的分析,考虑是否可以将其作为一种金融创新工具,应用于我国保障性商品房建设融资中。我们看到,刚刚稍有平息的美国金融危机即由MBS的过度发放引起,本文通过对次贷危机的深刻认识,分析在我国保障性商品房中应用可能与美国存在的异同,发现我国保障性商品房的售卖对象也是低收入人群,但与美国看似同,实为反。我国保障性商品房就是让中低收入者买得起房,为此,国家制定了一系列政策,包括划拨土地、调低地价,免收城市基础设施配套费等各种行政事业性收费和政府性基金,实行税收优惠政策,对于保障房的房地产建设,也给予政策倾斜和保护。这就从根本上降低了这种“政策性”住房的建设成本。而房屋本身的低价也会大大降低投资风险。 本文的创新点除了提出MBS在保障性商品房中的应用,还体现于提取出适用于我国保障性商品房的理论。基于MBS研究的两方面——提前偿付研究与定价研究,以提前偿付为重点,建立了两个模型。 在提前偿还预测模型中,通过研究影响国内外提前偿付率因素,找到符合我国保障性商品房的因素,采用Logistic模型分析方法,同时选用一家商业银行的数据,对所选样本进行分析和预测,得到影响该样本发生提前还款的因素主要有贷款金额、借款人婚姻状况和贷款利率变化。 在个人贷款实际清偿年限预测模型中,构建了以“收入—储蓄”为主因素的个人提前还款案例,通过ARMA模型预测未来人均GDP及人均收入,再结合前人的文献给出天津某类经济适用房贷款人的各项参数,最终得到个人提前还款的预期时间。 模型求解中用到R程序、Eviews、SPSS等数学统计分析软件。
[Abstract]:The explosion of urban population in China has caused the housing demand to swell, but the current housing expenditure is beyond the ability of the ordinary income families to pay.The state formulated a series of policies to establish indemnificatory apartment to meet the basic needs of the people's home ownership.However, the lack of funds has become the bottleneck of the construction of affordable housing.This paper studies the financing of affordable commercial housing with social security welfare and currency payment commodity.Based on the analysis of mortgage securitization (MBS), this paper considers whether it can be used as a financial innovation tool to finance the construction of affordable commercial housing in China.We can see that the US financial crisis, which has just subsided a little bit, is caused by the excessive issuance of MBS. Through the deep understanding of the subprime mortgage crisis, this paper analyzes the similarities and differences that may exist between the US and our country in the application of affordable commercial housing.It is found that the sale of affordable commercial housing in our country is also low-income people, but it seems to be the same as the United States.Affordable commercial housing in our country is to make housing affordable for low- and middle-income people. For this reason, the state has formulated a series of policies, including the allocation of land, the reduction of land prices, the exemption of all kinds of administrative fees and government funds, such as supporting fees for urban infrastructure facilities.The implementation of preferential tax policies, indemnificatory apartment's real estate construction, but also to give policy tilt and protection.This fundamentally reduces the construction cost of this kind of "policy" housing.And the low price of the house itself will greatly reduce the investment risk.The innovation of this paper is not only to put forward the application of MBS in the affordable commercial housing, but also to extract the theory suitable for our country's indemnificatory commercial housing.Based on two aspects of MBS research, prepayment and pricing, two models are established, focusing on prepayment.In the forecasting model of early repayment, by studying the factors affecting the early repayment rate at home and abroad, finding out the factors that accord with the guarantee commercial housing in our country, adopting the Logistic model analysis method, choosing the data of a commercial bank at the same time.Through the analysis and prediction of the selected sample, it is found that the factors influencing the prepayment of the sample are the loan amount, the borrower's marital status and the change of the loan interest rate.In the prediction model of the actual repayment years of personal loans, a case of individual prepayment with "income-savings" as the main factor is constructed, and the ARMA model is used to predict the per capita GDP and per capita income in the future.Combined with previous literatures, the parameters of some comfortable housing lenders in Tianjin are given, and the expected time of individual prepayment is finally obtained.The mathematical statistical analysis software, such as Eviewsl SPSS, is used in solving the model.
【学位授予单位】:天津科技大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:F299.23;F832.45
【参考文献】
相关期刊论文 前10条
1 姚捷;;我国住房抵押贷款借款人提前还款行为分析[J];商业研究;2005年23期
2 李琦;蒋志华;;基于ARMA模型的广元市中区经济增长预测分析[J];成都信息工程学院学报;2006年S1期
3 印X华,胡彬;关于经济适用房政策的探索[J];财经研究;1999年11期
4 谢赤;谈文胜;闫瑞增;;“住房抵押贷款支持证券”定价模型及其应用——基于最优期权赎回策略的分析[J];财经理论与实践;2007年02期
5 冯科;;从美国次级债危机反思中国房地产金融风险[J];南方金融;2007年09期
6 杨克磊,尚毅;考虑居民收入增长的购房按揭贷款理论模型[J];中国房地产;1999年05期
7 钱瑛瑛;中国住房保障政策研究——经济适用房与廉租住房[J];中国房地产;2003年08期
8 叶剑平;;住房消费应呈梯级发展[J];北京规划建设;2007年04期
9 林坚,冯长春;美国的住房政策[J];国外城市规划;1998年02期
10 孙冰,刘洪玉,卢玉玲;中低收入家庭住房补贴的形式与效率[J];经济体制改革;2005年04期
,本文编号:1738423
本文链接:https://www.wllwen.com/guanlilunwen/huobilw/1738423.html