几类随机模型及其在金融中的应用
发布时间:2022-01-08 16:16
本篇论文主要包含了以下三个随机模型。第一个模型是一个有交互作用的随机偏微分方程。我们证明了方程的弱解可由一对给定生灭率和转移率的马尔科夫链逼近。基于此逼近结果,我们可求得方程的解。第二个模型是一个以马氏调节的布朗运动作为输入流的存储过程。我们重点分析了它们负荷的极限性质。第三,作为随机模型在金融中的应用,我们考建立了一类依赖于波动类型的随机偏微分方程的远期利率模型,并将其用于信用违约互换等衍生品的定价。具体地,本篇论文由以下三章组成:在第一章中,我们研究了一类具有交互作用分支扰动的随机偏微分方程,此方程也称之为竞争的随机Lotka-Volterra方程。通过用一对时空尺度变换的粒子系统对方程进行逼近,我们证明了方程弱解的存在性。具体地,我们由给定的生灭率构造了一对马氏链,进而通过合适的时空尺度变换和Dynkin公式,我们得到了一对取值于离散函数空间的随机微分方程。而此方程的鞅部分根据跳的构造可以分解为反应、扩散和分支跳三项和。我们首先证明了关于它们上界和收敛的一些结果。利用这些结果我们可以证明方程各个构成项在合适的Sobolev空间的胎紧性。基于这些胎紧性结果,应用Prohorov定理...
【文章来源】:南开大学天津市 211工程院校 985工程院校 教育部直属院校
【文章页数】:74 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
1 The Approximation of Markov Jump Processes to a Pair of Interacting SPDEs with Branching Noises
1.1 Introduction
1.2 The Model and Main Results
1.3 Preliminaries
1.4 Proof of Theorem 1.2.1
2 On the Asymptotic Behavior of the Storage Process Fed by a Markov Modulated Brownian Motion
2.1 Introduction
2.2 The Model
2.3 The Growth Rate of the Running Maximum Process
3 Modeling the Term Structure of Forward Rate Curve by Wave-Typed SPDEs
3.1 Introduction
3.2 A Random Field Determined by A SPDE
3.3 Forward Rates:Modeling Bonds without Default
3.4 Pricing of Bond Option
3.5 Forward Rates:Modeling Defaultable Bonds
3.6 Pricing of Defaultable Swap
Bibliography
Acknowledgements
Resume and Publications
【参考文献】:
期刊论文
[1]From Markov Jump Systems to Two Species Competitive Lotka-Volterra Equations with Diffusion[J]. Xue Qiang WANGSchool of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P. R. China Li Jun BODepartment of Mathematics, Xidian University, Xi’an 710071, P. R. China Yong Jin WANGSchool of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P. R. China. Acta Mathematica Sinica(English Series). 2009(01)
本文编号:3576875
【文章来源】:南开大学天津市 211工程院校 985工程院校 教育部直属院校
【文章页数】:74 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
1 The Approximation of Markov Jump Processes to a Pair of Interacting SPDEs with Branching Noises
1.1 Introduction
1.2 The Model and Main Results
1.3 Preliminaries
1.4 Proof of Theorem 1.2.1
2 On the Asymptotic Behavior of the Storage Process Fed by a Markov Modulated Brownian Motion
2.1 Introduction
2.2 The Model
2.3 The Growth Rate of the Running Maximum Process
3 Modeling the Term Structure of Forward Rate Curve by Wave-Typed SPDEs
3.1 Introduction
3.2 A Random Field Determined by A SPDE
3.3 Forward Rates:Modeling Bonds without Default
3.4 Pricing of Bond Option
3.5 Forward Rates:Modeling Defaultable Bonds
3.6 Pricing of Defaultable Swap
Bibliography
Acknowledgements
Resume and Publications
【参考文献】:
期刊论文
[1]From Markov Jump Systems to Two Species Competitive Lotka-Volterra Equations with Diffusion[J]. Xue Qiang WANGSchool of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P. R. China Li Jun BODepartment of Mathematics, Xidian University, Xi’an 710071, P. R. China Yong Jin WANGSchool of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P. R. China. Acta Mathematica Sinica(English Series). 2009(01)
本文编号:3576875
本文链接:https://www.wllwen.com/guanlilunwen/huobilw/3576875.html