深圳西部热环境脆弱性评价及其空间分布
发布时间:2018-02-28 05:09
本文关键词: 热环境 脆弱性评价 地表温度 局部空间自相关 深圳 出处:《中国地质大学(北京)》2015年硕士论文 论文类型:学位论文
【摘要】:快速城市化进程对城市的生态环境产生了深刻的影响,城市局地气候变化显著,其中尤其以热环境变化最为显著。近年来,伴随全球变暖及城市化的客观趋势,世界范围内高温热浪灾害频发,对城市居民的健康造成了极大的威胁。城市热环境作为城市环境的主导因素,与城市高温热浪灾害的发生有直接的关系。对城市热环境进行脆弱性评价,识别高脆弱度热点区,可为高温热浪灾害的防范工作提供依据,对城市的可持续发展具有重要意义。本文以深圳西部为例,基于脆弱性评价理论体系,结合城市高温热浪风险特征,构建热环境脆弱性评价指标体系。准则层包括年龄结构、个人经济状况、医疗便捷度及热环境空间分布。其中,年龄结构包括居住区内0-5岁、65岁及以上人口密度;个人经济状况包括住宅基准地价、户均住宅面积、户均月租水平;医疗便捷度则由距离最近且具备急救能力的二、三级医院急救距离表征;热环境空间分布则由地表温度表征。以ASTER影像、第六次人口普查、基准地价等为数据源,利用劈窗算法、社会经济数据空间化、耗费距离模型等方法获得指标的空间分布;采用熵权法与Delphi法结合的方法确定权重,对深圳西部地区热环境脆弱性进行评价,从空间上识别高脆弱度热点区域。结果表明:(1)深圳市西部地区热环境脆弱性整体不高,数值分布相对均匀。按街道进行分区统计表明脆弱性平均值较高的区域主要位于研究区南部。(2)研究区热环境脆弱性热点空间分布呈组团聚集格局,主要热环境脆弱性热点区包括:原特区、前海、中部龙华中心、航空城、西部工业组团等。分析各热点区主导因素表明,南部特区内以居住、商服用地为主,热环境敏感人群较多,特区内脆弱性热点区的主导因素以敏感性为主;中部龙华中心热环境脆弱性热点区内医疗条件较差,脆弱性主导因素为适应性;西部地区包括前海热、航空城、西部工业组团热环境脆弱性热点区多为工业区及航空、港口、仓储物流用地,不透水面比例较高且连片、植被稀少,高温暴露较高,脆弱性主导因素为暴露性。因此,对于中、西部工业园区集中区域,有必要改善医疗条件以减小热感应死亡的发生概率,南部则应重点关注缓解高温敏感人群居住密度及居住条件的措施,同时提高居民的风险感知及高温预警措施,以减小热感应死亡事件的发生。
[Abstract]:The rapid urbanization process has had a profound impact on the ecological environment of the city, and the local climate change in the city is remarkable, especially in the thermal environment. In recent years, with the objective trend of global warming and urbanization, The frequent high temperature heat wave disasters in the world pose a great threat to the health of the urban residents. The urban thermal environment is the leading factor of the urban environment. It is directly related to the occurrence of urban high temperature heat wave disaster. To evaluate the vulnerability of urban thermal environment and identify hot spots with high vulnerability can provide the basis for the prevention work of high temperature heat wave disaster. This paper takes the western part of Shenzhen as an example, based on the vulnerability evaluation theory system and the characteristics of urban high temperature heat wave risk, constructs the thermal environment vulnerability evaluation index system. The criterion layer includes the age structure. Among them, the age structure includes the population density of 0-5 years old and 65 years old and above, the personal economic condition includes the standard land price of residence, the average residence area, the average monthly rent level of the residence, the distribution of the personal economic condition, the medical convenience and the space distribution of the thermal environment, the age structure includes the population density of 0-5 years old or above. The convenience of medical treatment is characterized by the distance of emergency treatment in the nearest and the second and third level hospitals with the ability of first aid, and the spatial distribution of the thermal environment is characterized by the surface temperature. The data sources are ASTER image, 6th population census, benchmark land price, etc. The spatial distribution of the index is obtained by using the split-window algorithm, the socio-economic data spatialization and the cost distance model, and the weight is determined by the combination of entropy weight method and Delphi method to evaluate the vulnerability of the thermal environment in the western part of Shenzhen. The results show that the thermal environment vulnerability in the western part of Shenzhen is not high. The area with higher mean value of vulnerability is mainly located in the south of the study area, and the spatial distribution of the hot spots of thermal environmental vulnerability in the study area is cluster and aggregation pattern. The main hot spots for the vulnerability of the thermal environment include: the former Special Zone, the Qianhai Sea, the Central Longhua Center, the Aeronautical City, the Western Industrial Group and so on. There are more sensitive people in the thermal environment, the main factor of the vulnerability hot spot in the special zone is sensitivity; the medical condition is poor in the hot spot region of the central Longhua central thermal environment, and the leading factor of vulnerability is adaptability; the western region includes the former sea fever. The hot spots of thermal environment vulnerability in aviation city and western industrial group are mostly industrial area, aviation, port, storage and logistics land, the proportion of impermeable surface is high and continuous, vegetation is rare, high temperature exposure is high, and the main factor of vulnerability is exposure. For the central and western industrial parks, it is necessary to improve the medical conditions to reduce the probability of thermal induced death, while the southern region should focus on the measures to alleviate the residential density and living conditions of the hyperthermia sensitive population. At the same time, the residents' risk awareness and high temperature warning measures are improved to reduce the occurrence of thermal induced death.
【学位授予单位】:中国地质大学(北京)
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:P429
【参考文献】
相关期刊论文 前9条
1 包刚;包玉海;李慧静;王萨仁娜;;用MODIS数据和分裂窗算法反演内蒙古地区的地表温度[J];测绘科学;2009年01期
2 翟盘茂,潘晓华;中国北方近50年温度和降水极端事件变化[J];地理学报;2003年S1期
3 卜心国;王仰麟;吴健生;;深圳快速城市化中地形对景观垂直格局的影响[J];地理学报;2008年01期
4 胡习英,屈吉鸿,郭洁;城市生态环境评价研究进展[J];华北水利水电学院学报;2005年02期
5 周明煜,曲绍厚,李玉英,宋锡铭;北京地区热岛和热岛环流特征[J];环境科学;1980年05期
6 宋鸿;陈晓玲;;运用空间自相关分析中国入境旅游增长空间格局[J];世界地理研究;2006年01期
7 吴健生;宗敏丽;彭建;;基于景观格局的矿区生态脆弱性评价——以吉林省辽源市为例[J];生态学杂志;2012年12期
8 岳文泽;徐丽华;;城市典型水域景观的热环境效应[J];生态学报;2013年06期
9 王雪梅,李新,马明国;基于遥感和GIS的人口数据空间化研究进展及案例分析[J];遥感技术与应用;2004年05期
,本文编号:1545885
本文链接:https://www.wllwen.com/guanlilunwen/wuliuguanlilunwen/1545885.html