节假日电商物流配送瓶颈优化研究
本文选题:电商物流 + 配送瓶颈 ; 参考:《华北电力大学(北京)》2017年硕士论文
【摘要】:随着我国网络购物的日益普及,电商物流配送业务量随之增长,我国现有的物流设施在非节假日期间的利用率已经达到较高水平,但电商在节假日促销产生的订单量却超出了快递企业的能力范围,快件的延误、损坏、丢失等快递爆仓现象在节假日时有发生,使消费者得不到良好的购物体验。为了缓解这种现象,电商和快递企业采用了预售商品和自建物流等办法,并取得了一定的成效。然而高峰期的物流配送瓶颈仍然存在,需要寻求更多的解决方案来应对这一难题。因此,本文提出提前配送的方法来解决节假日物流配送瓶颈问题,该方法根据消费者在网上的购物偏好和购物规律将部分商品提前运送至各大物流节点,待顾客下单后直接就近发货,从而分担物流高峰期的业务量,充分利用物流企业的闲时运力。本文主要包括如下研究内容:首先,通过调查访问了解了我国节假日的物流配送现状以及消费者的网购经历和网购需求,进而分析了电子商务背景下物流行业的发展现状,阐述了本文研究的必要性和现实性。介绍了电商物流配送的整个流程,从物流基础设置建设和行业发展特点的角度讨论了物流配送中存在的问题。其次,考虑到电商行业数据不容易获取,本文通过仿真对电子商务交易和商品配送流程进行模拟。仿真模型中选取了淘宝网上的21家销售不同种类商品的店铺,将店铺的实际销售量数据作为仿真参数设定依据,配送流程仿真的范围是电商发货比较集中的五个省份至北京市。仿真得到了商品来源、滞留时间、运输路径等数据。然后,采用决策树和两步聚类算法,经过据预处理、数据集成、数据转换和数据挖掘的过程得出结果。决策树模型的结果表明,节假日快递拥堵与发货地、商品来源和商品类别有关;聚类分析的结果表明,店铺销售商品在配送中的拥堵程度与店铺成交量正相关。根据以上结果,本文从运输条件、快递行业自身因素和消费者行为因素三个方面分析了导致物流配送瓶颈的原因。最后,针对物流配送瓶颈问题提出了配送优化策略并进行了仿真验证。提出的配送优化策略包含五方面:商品的配送种类、配送数量、商品来源、配送提前期和配送模式。仿真结果表明提前配送策略可以有效减少商品在运输过程中的滞留时间和顾客等待收货的时间,改善节假日物流爆仓的现象。这种提前配送模式对于我国目前电子商务背景下物流配送的发展具有一定价值,而且存在值得继续深入研究的内容,如扩大数据收集范围、增加数据收集量、在物流配送中考虑货物中转等因素。
[Abstract]:With the increasing popularity of online shopping in our country, the volume of e-commerce logistics distribution has increased, and the utilization rate of existing logistics facilities in China has reached a high level during the non-holiday period. However, the volume of orders generated by e-commerce in holiday promotion is beyond the scope of express delivery enterprises, express delivery delay, damage, loss and other express delivery exploding occurred from time to time in the holidays, so that consumers can not get a good shopping experience. In order to alleviate this phenomenon, e-commerce and express delivery enterprises have adopted the methods of pre-sale and self-building logistics, and have achieved certain results. However, the bottleneck of logistics distribution still exists in the peak period, and more solutions are needed to deal with this problem. Therefore, this paper puts forward the method of early distribution to solve the bottleneck problem of holiday logistics distribution. According to consumers' shopping preferences and shopping rules on the Internet, some goods are transported to each major logistics node in advance. When customers place orders, they can directly deliver goods in the vicinity, so as to share the volume of business in the peak period of logistics, and make full use of the spare time capacity of logistics enterprises. This article mainly includes the following research contents: first, through the investigation visit has understood our country holiday logistics distribution present situation, as well as the consumer's online shopping experience and the online purchase demand, then has analyzed the development present situation of the logistics industry under the electronic commerce background, This paper expounds the necessity and reality of this study. This paper introduces the whole flow of e-commerce logistics distribution, and discusses the existing problems in logistics distribution from the point of view of the construction of logistics infrastructure and the characteristics of industry development. Secondly, considering that e-commerce industry data is not easy to obtain, this paper simulates e-commerce transaction and commodity distribution process through simulation. In the simulation model, 21 stores selling different kinds of goods on Taobao are selected, and the actual sales data of the stores are taken as the basis of setting the simulation parameters. The scope of the simulation of distribution flow is from five provinces where the electronic merchants ship goods are concentrated to Beijing. The data of commodity source, residence time and transportation path are obtained by simulation. Then, the decision tree and two-step clustering algorithm are used to get the results through the process of data preprocessing, data integration, data conversion and data mining. The result of decision tree model shows that the congestion of holiday express is related to the place of delivery, the source of goods and the category of goods, and the result of cluster analysis shows that the degree of congestion in distribution is positively related to the turnover of shop. According to the above results, this paper analyzes the reasons of the bottleneck of logistics distribution from three aspects: transportation conditions, express industry's own factors and consumer's behavior factors. Finally, the optimization strategy of logistics distribution bottleneck is put forward and verified by simulation. The proposed distribution optimization strategy includes five aspects: distribution type, distribution quantity, commodity source, delivery lead time and distribution mode. The simulation results show that the early delivery strategy can effectively reduce the detention time of goods in the transportation process and the waiting time for customers to receive the goods, and improve the phenomenon of logistics exploding during holidays. This mode of advance distribution has some value for the development of logistics distribution under the background of electronic commerce in our country, and there are some contents worth further study, such as expanding the scope of data collection and increasing the amount of data collection. In the logistics distribution consideration of goods transfer and other factors.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F724.6;F259.2
【参考文献】
相关期刊论文 前10条
1 习明明;朱丽萌;;消费者行为与从众效应:来自“双十一”网购的证据[J];当代财经;2016年07期
2 WANG Wenrui;WU Yaohua;WU Yingying;;A Multi-stage Heuristic Algorithm for Matching Problem in the Modified Miniload Automated Storage and Retrieval System of E-commerce[J];Chinese Journal of Mechanical Engineering;2016年03期
3 薛开源;蒋惠西;顾传进;黄玲玉;黄宝娟;覃运梅;;快递配送终端优化研究[J];物流工程与管理;2016年02期
4 詹斌;谷孜琪;李阳;;“互联网+”背景下电商物流“最后一公里”配送模式优化研究[J];物流技术;2016年01期
5 王长青;;电商物流服务优化策略研究[J];物流工程与管理;2016年01期
6 彭启远;;消费者网购行为调查报告[J];现代营销(下旬刊);2014年07期
7 林秋意;;在电子商务环境下快递企业的爆仓状况分析及应对措施[J];知识经济;2014年09期
8 刘抒聪;;B2C电商企业物流配送模式创新研究[J];前沿;2013年15期
9 刘枚莲;刘同存;肖吉军;;基于双向关联规则的网络消费者偏好挖掘研究[J];微电子学与计算机;2013年03期
10 张援越;;电子商务环境下快递爆仓成因及对策研究[J];物流技术;2012年13期
相关博士学位论文 前2条
1 韩军涛;电子商务背景下我国快递业发展与协同机制研究[D];北京邮电大学;2014年
2 张旭凤;第三方物流企业配送网络演化规律及路径优化研究[D];北京工业大学;2012年
相关硕士学位论文 前10条
1 黄玉佳;数据挖掘技术在消费者偏好中的应用[D];北京林业大学;2015年
2 李玉瑾;中央红连锁超市物流配送路径优化问题及方法研究[D];哈尔滨理工大学;2015年
3 方传霞;Web数据挖掘在电子商务中的研究与应用[D];江苏科技大学;2015年
4 侯会茹;基于网购用户隐性行为特征的个性化推荐研究[D];燕山大学;2014年
5 谷励;长春市果蔬冷链物流配送路径优化研究[D];吉林大学;2014年
6 张树梁;电子商务环境下云配送物流模式研究及其应用[D];重庆大学;2014年
7 孔芹;基于规模经济的第三方物流配送优化研究[D];北京交通大学;2014年
8 刘旭华;第三方物流公司的物流配送系统分析与优化[D];湖南大学;2013年
9 杨凯;快递量波动下的分拣中心人员配置模型研究[D];大连理工大学;2013年
10 何俊生;快递行业配送路径模型优化研究[D];重庆交通大学;2013年
,本文编号:2053429
本文链接:https://www.wllwen.com/guanlilunwen/wuliuguanlilunwen/2053429.html