基于模糊控制的新型循迹智能小车设计
本文选题:智能小车 + 模糊控制 ; 参考:《沈阳工业大学》2015年硕士论文
【摘要】:随着现代科技不断发展,机器人应用越发广泛,而集机电于一体的多功能移动机器人的性能也被不断完善。无论在城市安全还是在空间探测等场合,移动机器人技术都倍受关注。作为移动机器人的一种,智能小车又被称作轮式机器人,在当前的科技发展中,此领域发展速度最快。智能小车具有良好的自动导引功能,因此在现代物流输送系统中,智能小车经常被用到。智能小车在运行过程中应具备良好的性能,如在路径识别和路径跟踪方面,它应做到判断准确,运行稳定,并且具有实时性。因此,在识别以及跟踪路径方面,对智能小车各性质的研究非常必要,就其准确性、稳定性和实时性而言,对这些性能进行提高,,具有十分重要并实际的意义。 本文提出了一种新型智能小车的结构,根据实际车体的架构,对智能小车进行研究,在此基础上建立数学模型。此结构可以使智能小车对未知的道路情况有更快速和精准的反应。新型结构利用舵机和差速电机相互配合,同时控制研究对象的转弯。以Cortex-A8核控制芯片为主控制器,Arduino单片机控制智能小车的底层操作,与主控制器进行数据通信来对小车进行控制。红外光电传感器负责识别路径信息,然后将采集到的数据传送给主控制器,主控制器通过控制策略给出精确的数据信息,最后利用舵机与差速电机相结合来控制小车的转角以及行驶速度。控制策略的选择也会在一定程度上影响到智能小车在路径识别与跟踪方面的性质,如其准确性、稳定性和实时性。因为被识别的路径信息较为复杂,且具有不确定性,所以本课题在路径信息分析上选择了模糊控制算法。人对被操作对象做出控制动作时,会积累一定的经验,模糊控制器则是通过对此经验的分析并依靠进行工作,因此不需要建立关于路径的数学模型。通过对智能小车的运行状态进行观察,发现智能小车可以在给定的路线上进行精准运行,因此智能小车在路径识别上表现良好,尤其是在的精准度、稳定性、以及速度控制上尤为突出,通过本文的研究,智能小车的性能得到大幅度的提高。
[Abstract]:With the development of modern science and technology, the application of robot is becoming more and more extensive, and the performance of multifunctional mobile robot with electromechanical integration has been continuously improved. Mobile robot technology has attracted much attention in both urban safety and space exploration. As a kind of mobile robot, intelligent car is also called wheeled robot. Intelligent vehicle has good automatic guidance function, so it is often used in modern logistics transportation system. The intelligent car should have good performance in the running process, such as path identification and path tracking, it should be accurate, stable, and real-time. Therefore, it is necessary to study the properties of intelligent vehicle in identifying and tracking the path. In terms of its accuracy, stability and real-time performance, it is of great importance and practical significance to improve these properties. In this paper, the structure of a new type of intelligent car is proposed. According to the structure of the actual car body, the intelligent car is studied, and the mathematical model is established on the basis of it. This structure allows smart cars to respond more quickly and accurately to unknown road conditions. The new structure uses the steering gear and differential motor to coordinate each other and controls the turning of the research object at the same time. Taking Cortex-A8 core control chip as the main controller, Arduino single chip computer controls the bottom operation of the intelligent car, and communicates with the main controller to control the car. The infrared photoelectric sensor is responsible for identifying the path information, and then transmitting the collected data to the master controller, which gives the accurate data information through the control strategy. Finally, the steering gear and differential motor are used to control the angle and speed of the car. The choice of control strategy will also affect the characteristics of intelligent vehicle in path identification and tracking to some extent, such as accuracy, stability and real-time. Because the identified path information is complex and uncertain, the fuzzy control algorithm is chosen in the path information analysis. When a person makes a control action on an operating object, he accumulates certain experience, while the fuzzy controller analyzes the experience and relies on the work, so it is not necessary to establish a mathematical model about the path. By observing the running state of the intelligent car, it is found that the intelligent car can run precisely on a given route, so the intelligent car performs well in path identification, especially in the accuracy and stability of the vehicle. And speed control is particularly prominent, through the research of this paper, the performance of smart car has been greatly improved.
【学位授予单位】:沈阳工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TP273.4;TP242
【参考文献】
相关期刊论文 前10条
1 袁本华;董铮;;基于Arduino控制板的温室大棚测温系统设计[J];安徽农业科学;2012年08期
2 王握文;世界机器人发展历程[J];国防科技;2001年01期
3 费琛;杨会成;杨惠;;基于图像传感器的智能车硬件系统设计[J];工业控制计算机;2012年05期
4 王桐;杨斌;;多网络和Linux代理的Android无线远程控制系统[J];单片机与嵌入式系统应用;2012年12期
5 吴宏杰;张跃辉;王铮;迟晓丽;王月红;;日本机器人发展概览[J];电子制作;2013年09期
6 吴宏杰;张跃辉;迟晓丽;王铮;王月红;;中国机器人的发展状况[J];电子制作;2013年09期
7 张红霞;;国内外工业机器人发展现状与趋势研究[J];电子世界;2013年12期
8 陈磊;高红杰;;基于蓝牙与Android设备的控制系统设计[J];电子制作;2014年07期
9 闫超;张志雄;罗自荣;李坡;;美国海军无人系统作战特点及关键技术分析[J];国防科技;2014年05期
10 李蕾;王芳;;基于4核DSP的水下机器人视觉传感器设计[J];河南师范大学学报(自然科学版);2011年01期
相关博士学位论文 前2条
1 邱雪娜;基于视觉的运动目标跟踪算法及其在移动机器人中的应用[D];华东理工大学;2011年
2 白大鹏;多功能助行机器人机构研究[D];哈尔滨工程大学;2013年
本文编号:2062043
本文链接:https://www.wllwen.com/guanlilunwen/wuliuguanlilunwen/2062043.html