当前位置:主页 > 管理论文 > 物流管理论文 >

自适应遗传算法在越库车辆调度问题中的应用研究

发布时间:2019-06-14 13:36
【摘要】:随着国民经济的快速发展,对社会物流需求量显著增加,推动物流产业保持持续、稳定、快速发展。在物流实际运作过程中,越库车辆调度一直以来都是影响企业的运输效率和物流成本的关键因素。越库是指从入库货车到达配送中心、停靠卸载仓门进行卸货开始,货物进行分配和处理,再到装载仓门进行装载的整个过程的一种组织方式,货物不会在配送中心存储而是直接分配的方式进行。这种组织方式的实施,能够从成本、时间、环节等方面降低和减少,从而大大提升了物流的效益。越库车辆调度问题可描述为在一定约束条件下,如何合理分配车辆与仓门,使得整个运作在成本或时间上达到最优化的问题。它是一个典型的NP难(NP-Hard)问题,也是最难求解的经典组合优化问题之一。在过去的几十年里,研究者们都在不断寻找和尝试新的调度算法,使其提高操作效率、降低操作成本和时间、增加企业的竞争力。遗传算法作为仿生学方法中最重要的算法之一,也是应用最广泛的进化计算方法之一。遗传算法在解决各种非线性优化问题中表现出的自适应性,全局最优性以及隐含的并行性等特点让其在调度的优化研究方面有着不可替代的优势。本文针对多仓门越库车辆调度问题特点,以遗传算法为基础,提出了一种改进的、更加适用于求解多仓门越库车辆调度问题的新算法。由于简单遗传算法在应用中常出现收敛过慢、稳定性差以及早熟现象等问题,而现有的一些改进的自适应遗传算法在求解过程中容易产生局部最优解等缺陷。本文从整个遗传算法流程出发,针对遗传算法前期容易陷入局部最优,中后期进化缓慢等缺陷,从种群多样性,个体最优保存策略以及交叉概率和变异概率几个方面进行改进,根据实际问题改进交叉方式和变异方式,提出了一种能有效解决多仓门越库车辆调度问题的自适应遗传算法。通过实验结果表明,该算法在收敛快速性和稳定性等方面都有明显的改善,达到了预期的效果。最后,本文针对越库车辆调度的模型和改进的算法来开发一个多仓门越库车辆调度系统。
[Abstract]:With the rapid development of national economy, the demand for social logistics has increased significantly, and the logistics industry has been promoted to maintain sustainable, stable and rapid development. In the actual operation process of logistics, vehicle scheduling has always been the key factor affecting the transportation efficiency and logistics cost of enterprises. Crossing the warehouse refers to a way of organizing the whole process of loading and unloading the goods from the loading truck to the distribution center, the goods are distributed and processed, and then to the loading door. The goods will not be stored in the distribution center, but will be distributed directly. The implementation of this organization can reduce and reduce the cost, time, link and so on, thus greatly improving the efficiency of logistics. The problem of vehicle scheduling over warehouse can be described as the problem of how to distribute vehicles and warehouse doors reasonably under certain constraints, so that the whole operation can be optimized in cost or time. It is a typical NP difficult (NP-Hard) problem, and it is also one of the most difficult classical combinatorial optimization problems. In the past few decades, researchers have been constantly looking for and trying new scheduling algorithms to improve operational efficiency, reduce operating costs and time, and increase the competitiveness of enterprises. Genetic algorithm, as one of the most important algorithms in bionic methods, is also one of the most widely used evolutionary computing methods. Genetic algorithm has irreplaceable advantages in scheduling optimization research because of its adaptability, global optimality and implicit parallelism in solving various nonlinear optimization problems. In this paper, according to the characteristics of multi-warehouse gate vehicle scheduling problem, based on genetic algorithm, an improved new algorithm is proposed, which is more suitable for solving multi-warehouse gate vehicle scheduling problem. Because of the problems of slow convergence, poor stability and premature phenomenon in the application of simple genetic algorithm, some existing improved adaptive genetic algorithms are easy to produce local optimal solution and other defects in the process of solving. Based on the whole process of genetic algorithm, aiming at the defects of genetic algorithm, such as easy to fall into local optimization in the early stage and slow evolution in the middle and late stages, this paper improves the population diversity, individual optimal preservation strategy, cross probability and mutation probability. According to the actual problems, an adaptive genetic algorithm is proposed, which can effectively solve the vehicle scheduling problem of multi-warehouse gate crossing. The experimental results show that the convergence rapidity and stability of the algorithm are obviously improved, and the expected results are achieved. Finally, a multi-warehouse gate vehicle scheduling system is developed according to the model and improved algorithm of cross-warehouse vehicle scheduling.
【学位授予单位】:广东工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U492.22;TP18

【相似文献】

相关期刊论文 前10条

1 朱力立,张焕春,经亚枝;基于六模糊控制器的自适应遗传算法(英文)[J];Transactions of Nanjing University of Aeronautics & Astronau;2003年02期

2 张群,赵刚;基于模糊逻辑控制器的自适应遗传算法[J];工业工程与管理;2004年06期

3 李井明;刘志斌;;基于自适应遗传算法的水污染控制系统规划[J];科学技术与工程;2006年22期

4 刘宗发;王彦生;徐红玉;杨俊森;;基于自适应遗传算法的单层球面网壳优化分析[J];河南科技大学学报(自然科学版);2006年06期

5 陈超武;董绍华;;求解炼钢—连铸批量问题的自适应遗传算法[J];制造业自动化;2007年02期

6 朱志宇;王建华;;基于混沌优化自适应遗传算法的数据关联求解[J];航天控制;2007年04期

7 王海波;宋星原;王文凯;;动态加速自适应遗传算法的应用[J];水电能源科学;2008年06期

8 王爱明;王寿武;;基于信息熵的自适应遗传算法研究[J];机电工程技术;2008年11期

9 姜静;谭博学;姜琳;;基于改进自适应遗传算法的仿真研究[J];山东理工大学学报(自然科学版);2008年06期

10 韩江洪;王梅芳;马学森;王跃飞;;基于自适应遗传算法的虚拟企业伙伴选择求解[J];计算机集成制造系统;2008年01期

相关会议论文 前10条

1 楚永宾;唐振;刘小平;卫星;张利;;基于自适应遗传算法的单点交通信号控制方法[A];全国第21届计算机技术与应用学术会议(CACIS·2010)暨全国第2届安全关键技术与应用学术会议论文集[C];2010年

2 郭毓;林喜波;胡维礼;;基于代沟信息的自适应遗传算法[A];江苏省自动化学会七届四次理事会暨2004学术年会青年学者论坛论文集[C];2004年

3 张文广;周绍磊;李新;;一种新的改进型自适应遗传算法研究[A];2005年中国智能自动化会议论文集[C];2005年

4 刘洪杰;王秀峰;王治宝;;多峰搜索的自适应遗传算法[A];第二十一届中国控制会议论文集[C];2002年

5 潘伟;杨劲松;;基于实数自适应遗传算法的μ综合问题[A];2007中国控制与决策学术年会论文集[C];2007年

6 钟守楠;;自适应遗传算法的探讨[A];Systems Engineering, Systems Science and Complexity Research--Proceeding of 11th Annual Conference of Systems Engineering Society of China[C];2000年

7 杨泽青;刘丽冰;谭志洪;刘伟玲;;自适应遗传算法在柔性检测路径规划中的应用[A];第二十七届中国控制会议论文集[C];2008年

8 王晓鹏;;基于混合自适应遗传算法的飞机气动优化设计[A];面向21世纪的科技进步与社会经济发展(上册)[C];1999年

9 杨林德;刘学增;王悦照;朱合华;仇圣华;;改进的自适应遗传算法及其工程应用[A];第八次全国岩石力学与工程学术大会论文集[C];2004年

10 危涛;宋万杰;张林让;;自适应遗传算法在M-序列码搜索中的应用[A];第八届全国信号与信息处理联合学术会议论文集[C];2009年

相关博士学位论文 前1条

1 黄利;一类自适应遗传算法的渐近行为研究[D];武汉大学;2012年

相关硕士学位论文 前10条

1 李欣;自适应遗传算法的改进与研究[D];南京信息工程大学;2008年

2 王宁;基于自适应遗传算法的城市电网网架规划[D];华北电力大学(北京);2008年

3 闫宏亮;改进的自适应遗传算法在桁架结构优化中的应用[D];长安大学;2009年

4 张玉萍;自适应遗传算法的研究及应用[D];哈尔滨工业大学;2009年

5 陈忠华;基于自适应遗传算法的模糊控制器优化设计[D];重庆理工大学;2010年

6 李坤;参数参与进化的自适应遗传算法研究[D];南昌航空大学;2010年

7 陈超;自适应遗传算法的改进研究及其应用[D];华南理工大学;2011年

8 闫妍;一种新的自适应遗传算法[D];哈尔滨工程大学;2007年

9 吕德刚;改进自适应遗传算法在防爆高能电机优化设计中的应用[D];哈尔滨理工大学;2007年

10 王思艳;自适应遗传算法的研究[D];华北电力大学(河北);2009年



本文编号:2499427

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/wuliuguanlilunwen/2499427.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户bf86d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com