高蛋白类原料的产甲烷性能和微生物群落动态
发布时间:2021-03-30 04:40
由于日益激增的能源危机和环境问题,人们将越来越多的注意力聚焦于一种新的生物燃料——生物质资源。厌氧消化(AD)技术应用广泛,可将生物质资源(如有机废弃物)转化为生物甲烷,生产可再生能源。不同生化性质的食品废弃物是有机废弃物的重要组成部分之一。在中国,快速增长的经济推动了饮食结构的急剧改变,其中,富含蛋白质的食物被大量使用,包括海产品、肉类(猪肉、牛肉和羊肉)、乳制品、家禽、谷物和豆类等。因此,每年会产生大量高蛋白含量的食品废弃物,造成严重的环境污染。这些高蛋白类废弃物可以有效地被厌氧消化利用,进行甲烷生产。在厌氧消化过程中,蛋白质首先被水解成20种氨基酸,然后被发酵成短链或支链有机酸,最后转化为终产物甲烷。然而,每种氨基酸都有不同的产甲烷性能和生物降解性,所以高蛋白类食品废弃物的消化特性在很大程度上取决于其氨基酸的组成和浓度。因此,为了在厌氧消化中有效利用高蛋白类废弃物,有必要对每种氨基酸的产甲烷性能进行研究。本课题系统地研究了 20种不同氨基酸的厌氧消化性能和微生物群落变化。随后,分别在中温和高温条件下,研究了蛋白质含量高或适中的食物样品的厌氧消化性能和微生物群落结构。最后,研究了生...
【文章来源】:北京化工大学北京市 211工程院校 教育部直属院校
【文章页数】:124 页
【学位级别】:博士
【文章目录】:
学位论文数据集
Abstract
摘要
List of abbreviations
Chapter 1 Introduction
1.1 Global fossil fuel consumption and transition to renewable energy
1.2 Protein waste generation
1.3 Mechanism of anaerobic digestion
1.4 Prospects of protein utilization for methane production via AD
1.5 Strategies to enhance methane production performance
1.5.1 Temperature based enhancement
1.5.2 Use of biochar as additives
1.6 Feasibility of AD projects utilizing municipal solid waste in China according to 13h five-year plan
1.7 Research objectives,content, and route
1.7.1 Research objectives
1.7.2 Research content and route
Chapter 2 Experimental materials and methods
2.1 Substrates, biochar, and inoculum
2.2 Laboratory reagents and equipment
2.3 Anaerobic digester
2.4 Analytical methods
2.5 Biochemical composition analysis of substrates
2.5.1 Determination of total carbohydrates
2.5.2 Determination of crude lipid
2.5.3 Determination of crude Protein
2.5.4 Determination of amino acids
2.6 Maximal theoretical methane yield and biodegradability
2.7 Calculation of methane production
2.8 Kinetic models for the methane production during anaerobic digestion
2.9 16S rRNA gene sequencing and analysis
2.10 Indexes indicating biological community diversity and richness
2.10.1 Shannon index
2.10.2 Chaol index
2.10.3 ACE index
2.10.4 Simpson index
2.10.5 Coverage
2.11 Data analysis and processing
Chapter 3 Biomethane production of protein-constituent amino acids and associatedmicrobial community changes during anaerobic digestion
3.1 Materials
3.2 Experimental design
3.3 Results and discussions
3.3.1 Daily methane yield
3.3.2 Cumulative methane yield
3.3.3 Biodegradability
3.3.4 Kinetic analysis of a modified Gompertz model
3.3.5 Anaerobic digestion stability
3.3.6 Microbial community analysis
3.3.6.1 Species diversity and richness
3.3.6.2 Bacterial genera
3.3.6.3 Archaeal genera
3.4 Summary
Chapter 4 Comparing mesophilic and thermophilic anaerobic digestion of protein substrates:methane production performance, amino acid profile, and predominant microbialcommunities
4.1 Materials
4.2 Experiment design
4.3. Results and discussions
4.3.1 Characteristics of substrates
4.3.2 Daily methane yield
4.3.3 Cumulative methane yield
4.3.4 Biodegradability
4.3.5 Kinetic analysis of a modified Gompertz model
4.3.6 Anaerobic digestion stability
4.3.7 Correlation analysis
4.3.8 Microbial community analysis
4.3.8.1 Species diversity and richness
4.3.8.2 Bacterial genera
4.3.8.3 Archaeal genera
4.4 Summary
Chapter 5 Impact of biochar addition on methane production performance of differentprotein substrates
5.1 Materials
5.2 Experimental design
5.3 Results and discussions
5.3.1 Characteristics of substrates and biochar
5.3.2 Daily methane production
5.3.3 Cumulative methane production
5.3.4 Biomethane production potential and biodegradability
5.3.5 Kinetic model evaluation
5.3.6 Anaerobic digestion stability
5.4 Summary
th five-year plan">Chapter 6 Economic factors and cost benefit analysis of AD plants utilizing MSW in Chinaaccording to 13th five-year plan
6.1 Economic factors
6.1.1 Markets
6.1.2 Capitals
6.1.3 Financing modes
6.2 Cost benefit analysis
6.2.1 Investment costs
6.2.2 Operational costs
6.3 Case of a typical BOT funded AD project in China
6.4 Summary
Chapter 7 Conclusions
7.1 Main conclusions
7.2 Innovation
7.3 Research prospects
References
Acknowledgements
List of publications
Introduction of author and supervisor
附件
【参考文献】:
期刊论文
[1]Discoursing on Soxhlet extraction of ginseng using association analysis and scanning electron microscopy[J]. Yuan Yue,Zi-Dong Qiu,Xian-You Qu,Ai-Ping Deng,Yuan Yuan,Lu-Qi Huang,Chang-Jiang-Sheng Lai. Journal of Pharmaceutical Analysis. 2018(05)
[2]Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes[J]. Xuchuan Shi,Jia Lin,Jiane Zuo,Peng Li,Xiaoxia Li,Xianglin Guo. Journal of Environmental Sciences. 2017(05)
本文编号:3108879
【文章来源】:北京化工大学北京市 211工程院校 教育部直属院校
【文章页数】:124 页
【学位级别】:博士
【文章目录】:
学位论文数据集
Abstract
摘要
List of abbreviations
Chapter 1 Introduction
1.1 Global fossil fuel consumption and transition to renewable energy
1.2 Protein waste generation
1.3 Mechanism of anaerobic digestion
1.4 Prospects of protein utilization for methane production via AD
1.5 Strategies to enhance methane production performance
1.5.1 Temperature based enhancement
1.5.2 Use of biochar as additives
1.6 Feasibility of AD projects utilizing municipal solid waste in China according to 13h five-year plan
1.7 Research objectives,content, and route
1.7.1 Research objectives
1.7.2 Research content and route
Chapter 2 Experimental materials and methods
2.1 Substrates, biochar, and inoculum
2.2 Laboratory reagents and equipment
2.3 Anaerobic digester
2.4 Analytical methods
2.5 Biochemical composition analysis of substrates
2.5.1 Determination of total carbohydrates
2.5.2 Determination of crude lipid
2.5.3 Determination of crude Protein
2.5.4 Determination of amino acids
2.6 Maximal theoretical methane yield and biodegradability
2.7 Calculation of methane production
2.8 Kinetic models for the methane production during anaerobic digestion
2.9 16S rRNA gene sequencing and analysis
2.10 Indexes indicating biological community diversity and richness
2.10.1 Shannon index
2.10.2 Chaol index
2.10.3 ACE index
2.10.4 Simpson index
2.10.5 Coverage
2.11 Data analysis and processing
Chapter 3 Biomethane production of protein-constituent amino acids and associatedmicrobial community changes during anaerobic digestion
3.1 Materials
3.2 Experimental design
3.3 Results and discussions
3.3.1 Daily methane yield
3.3.2 Cumulative methane yield
3.3.3 Biodegradability
3.3.4 Kinetic analysis of a modified Gompertz model
3.3.5 Anaerobic digestion stability
3.3.6 Microbial community analysis
3.3.6.1 Species diversity and richness
3.3.6.2 Bacterial genera
3.3.6.3 Archaeal genera
3.4 Summary
Chapter 4 Comparing mesophilic and thermophilic anaerobic digestion of protein substrates:methane production performance, amino acid profile, and predominant microbialcommunities
4.1 Materials
4.2 Experiment design
4.3. Results and discussions
4.3.1 Characteristics of substrates
4.3.2 Daily methane yield
4.3.3 Cumulative methane yield
4.3.4 Biodegradability
4.3.5 Kinetic analysis of a modified Gompertz model
4.3.6 Anaerobic digestion stability
4.3.7 Correlation analysis
4.3.8 Microbial community analysis
4.3.8.1 Species diversity and richness
4.3.8.2 Bacterial genera
4.3.8.3 Archaeal genera
4.4 Summary
Chapter 5 Impact of biochar addition on methane production performance of differentprotein substrates
5.1 Materials
5.2 Experimental design
5.3 Results and discussions
5.3.1 Characteristics of substrates and biochar
5.3.2 Daily methane production
5.3.3 Cumulative methane production
5.3.4 Biomethane production potential and biodegradability
5.3.5 Kinetic model evaluation
5.3.6 Anaerobic digestion stability
5.4 Summary
th five-year plan">Chapter 6 Economic factors and cost benefit analysis of AD plants utilizing MSW in Chinaaccording to 13th five-year plan
6.1 Economic factors
6.1.1 Markets
6.1.2 Capitals
6.1.3 Financing modes
6.2 Cost benefit analysis
6.2.1 Investment costs
6.2.2 Operational costs
6.3 Case of a typical BOT funded AD project in China
6.4 Summary
Chapter 7 Conclusions
7.1 Main conclusions
7.2 Innovation
7.3 Research prospects
References
Acknowledgements
List of publications
Introduction of author and supervisor
附件
【参考文献】:
期刊论文
[1]Discoursing on Soxhlet extraction of ginseng using association analysis and scanning electron microscopy[J]. Yuan Yue,Zi-Dong Qiu,Xian-You Qu,Ai-Ping Deng,Yuan Yuan,Lu-Qi Huang,Chang-Jiang-Sheng Lai. Journal of Pharmaceutical Analysis. 2018(05)
[2]Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes[J]. Xuchuan Shi,Jia Lin,Jiane Zuo,Peng Li,Xiaoxia Li,Xianglin Guo. Journal of Environmental Sciences. 2017(05)
本文编号:3108879
本文链接:https://www.wllwen.com/guanlilunwen/xiangmuguanli/3108879.html