当前位置:主页 > 管理论文 > 移动网络论文 >

不完全类超立方体网络的可诊断性

发布时间:2018-08-26 16:23
【摘要】:可诊断度是衡量一个互连网络可靠性的重要指标,用来评估当系统中某些顶点出现故障时该系统可以准确找出故障顶点的能力.PMC模型是并行计算机系统中的一种经典的可诊断模型,被广泛地应用于系统诊断,目前已有大量的基于PMC模型的系统诊断性质研究.类超立方体是一种重要的网络拓扑结构,有很多很好的性质,其中超立方体网络在实际中得到了广泛应用.研究者们针对类超立方体网络存在坏边或者硬故障顶点时系统可诊断度进行了研究,对同时存在两种故障情形下的可诊断度还没有相关研究.设是一个-维类超立方体网络,本文证明对于坏边和硬故障顶点的集合S,若|S|≤n-1且,则H_n-S在PMC模型下的系统可诊断度是δ(H_n-S),其中δ(H_n-S)表示H_n-S的最小顶点度数.
[Abstract]:Diagnosability is an important index to measure the reliability of an interconnection network. PMC model is a classical diagnostic model for parallel computer systems, which is widely used in system diagnosis. At present, there have been a lot of research on system diagnosis properties based on PMC model. Hypercube is an important network topology, which has many good properties, among which the hypercube network has been widely used in practice. Researchers have studied the degree of system diagnosability when there are bad edges or hard fault vertices in hypercube-like networks, and there is no related research on the degree of diagnosability in the case of two kinds of faults at the same time. Let s be a dimensional hypercube network. In this paper, we prove that for the set S of bad edges and hard fault vertices, if S 鈮,

本文编号:2205475

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2205475.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户69d02***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com