当前位置:主页 > 管理论文 > 移动网络论文 >

千兆以太网IEEE 1588协议的实现

发布时间:2018-09-12 17:30
【摘要】:随着网络技术的蓬勃发展,以太网以其协议通用性、远距离传输、灵活的网络拓扑以及不断发展的网络带宽等诸多优势,被广泛应用到测试领域。网络化自动测试系统主要针对分布式测试任务,与以太网普通应用相比,需实现控制操作的精确性和采集数据的时序关联性。IEEE 1588协议标准是网络化自动测试系统中实现测试设备及测试数据精密同步的重要方式。随着被测目标的测试复杂度和测试内容的持续增长,百兆以太网已很难适应系统对数据传输的需求,千兆以太网接口已成为未来网络化测试设备的重要形式。本文在总结当前主流的PTP(Precision Time Protocol)硬件支持方式的基础上,以Xilinx Zynq-7000 SOC作为硬件设计平台,深入分析比较了基于该硬件平台的三种PTP硬件支持方案,以通用性和可扩展性为主要考量因素,设计了一种基于PL(Programmable Logic)自研IP核实现千兆以太网下IEEE 1588协议的方案框架。本方案为搭建网络通信链路,设计了基于FMC接口的千兆以太网PHY硬件电路和屏蔽底层影响的速率选择与数据优化IP核,并开发相应的通信测试工程测试了PHY与PS(Processing System)之间的通信功能。为完成PTP硬件支持,本方案在可编程逻辑器件中设计可配置实时时钟和时间戳模块,为上层设计提供了完备的时钟调节接口,完成IEEE 1588实现亚微秒级同步精度所需的硬件支持,不要求在通信链路中配备支持硬件时间戳功能的PHY或MAC器件。上层设计采用在Linux操作系统中移植并优化PTPd开源软件并开发IP核设备驱动程序实现IEEE 1588状态机和硬件时间戳获取功能,本方案可以直接移植到包含可编程逻辑器件和支持Linux的微处理器的仪器控制架构中。在本方案的测试中,利用主从时钟输出秒脉冲信号(PPS),精确测试网络节点设备的时钟同步精度,本文从功能性和应用性两方面对本方案同步精度进行测试,分析设备时钟频率偏移、分布时钟节点数、交换机转发次数以及网络背景流量对同步精度的影响,验证了在经多次交换机转发并存在一定背景流量下的网络化测试系统中保持各网络节点设备亚微秒级同步精度的可行性。
[Abstract]:With the rapid development of network technology, Ethernet has been widely used in the field of testing for its advantages of universal protocol, long-distance transmission, flexible network topology and continuous development of network bandwidth. The networked automatic test system is mainly aimed at distributed testing tasks, compared with Ethernet applications. The precision of control operation and the timing correlation of data collected. IEEE 1588 protocol standard is an important way to realize precision synchronization of test equipment and test data in networked automatic test system. With the increasing of test complexity and test content, it is very difficult to adapt to the requirement of data transmission. Gigabit Ethernet interface has become an important form of networked test equipment in the future. On the basis of summing up the current mainstream PTP (Precision Time Protocol) hardware support methods and taking Xilinx Zynq-7000 SOC as the hardware design platform, this paper deeply analyzes and compares three kinds of PTP hardware support schemes based on this hardware platform. Taking generality and extensibility as the main consideration, a scheme framework for implementing IEEE 1588 protocol under Gigabit Ethernet based on PL (Programmable Logic) self-developed IP core is designed. In order to build the network communication link, the PHY hardware circuit of Gigabit Ethernet based on FMC interface is designed, and the rate selection and data optimization IP core of shielding the influence of the bottom layer are designed. The corresponding communication test project is developed to test the communication function between PHY and PS (Processing System). In order to complete PTP hardware support, this scheme designs configurable real-time clock and timestamp modules in programmable logic devices, provides a complete clock adjusting interface for the upper layer design, and accomplishes the hardware support required by IEEE 1588 to realize sub-microsecond synchronization precision. PHY or MAC devices that support hardware timestamp functionality are not required in communication links. The upper design adopts porting and optimizing PTPd open source software in Linux operating system and developing IP nuclear device driver to realize IEEE 1588 state machine and hardware timestamp acquisition function. This scheme can be directly transplanted to the instrument control architecture including programmable logic devices and microprocessors supporting Linux. In the test of this scheme, the clock synchronization accuracy of network node equipment is accurately tested by (PPS), which is used to output the second pulse signal from the master slave clock. The synchronization accuracy of this scheme is tested from the aspects of function and application. The effects of device clock frequency offset, number of distributed clock nodes, switch forwarding times and network background flow on synchronization accuracy are analyzed. The feasibility of maintaining the sub-microsecond synchronization accuracy of each network node equipment in the networked test system which is forwarded by multiple switches and has a certain background flow is verified.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP393.11

【相似文献】

相关期刊论文 前10条

1 ;思科千兆以太网在证券行业中的成功应用[J];上海微型计算机;2000年51期

2 T.C.Tan;;千兆以太网援手六类[J];每周电脑报;2000年03期

3 ;千兆以太网[J];电子科技;2001年02期

4 王晓莉;千兆以太网技术综述[J];呼伦贝尔学院学报;2001年03期

5 子晨;21世纪日本学校千兆以太网的应用技术研讨会将在沪召开[J];工程设计CAD与智能建筑;2001年12期

6 是云冰,李之棠;千兆以太网传输线路的研究[J];湖北师范学院学报(自然科学版);2001年02期

7 刘畅;千兆以太网卡趋向小型化[J];互联网周刊;2001年31期

8 石淑华,王青;千兆以太网技术发展的分析[J];福建电脑;2002年08期

9 林重顶;应用千兆以太网实现e生活[J];市场与电脑;2002年Z1期

10 王志超;千兆以太网何以倍受市场青睐[J];福建电脑;2003年06期

相关会议论文 前9条

1 吴武雄;;千兆以太网交换技术在高速公路上的应用[A];中国高速公路管理学术论文集(2009卷)[C];2009年

2 赵静;张来保;;千兆以太网技术的应用[A];中国航海学会船舶机电与通信导航专业委员会2002年学术年会论文集(通信导航分册)[C];2002年

3 吕小平;向健勇;黄河清;唐小峰;;基于千兆以太网的高速数据采集系统设计[A];2008'中国信息技术与应用学术论坛论文集(二)[C];2008年

4 陈晔峰;;在第五类双绞线上实现千兆以太网[A];第五届全国优秀青年气象科技工作者学术研讨会学术论文集[C];2002年

5 翁玉芬;方建滨;车永刚;王正华;;All-to-all在千兆以太网集群上的性能分析[A];2009全国计算机网络与通信学术会议论文集[C];2009年

6 江榕;;千兆以太网及在SDH上的应用[A];全国第十次光纤通信暨第十一届集成光学学术会议(OFCIO’2001)论文集[C];2001年

7 春增军;;不同厂商千兆以太网设备互联关键技术分析[A];广东省电机工程学会2003-2004年度优秀论文集[C];2005年

8 徐o,

本文编号:2239739


资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2239739.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c3d80***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com