当前位置:主页 > 管理论文 > 移动网络论文 >

基于复杂网络的微博用户关系网络结构研究

发布时间:2018-11-11 19:12
【摘要】:随着互联网的发展,产生了包括Web在内的许多不同的信息网络。微博(Micro-Blog)就是其中的一种,作为一种社会网络与网络新媒体,微博信息传播速度快,使用方便,,已成为互联网上最受欢迎的服务之一。微博网络中最基本的关系是关注关系,微博用户之间可以很容易地建立这种关系,导致微博用户之间的关系错综复杂。研究微博用户关系具有重要意义,在舆情监控,信息推荐、网络营销方面具有广泛应用前景。 为了揭示微博用户关系的一般规律,本文以新浪微博为例,引入复杂网络分析方法对微博关注关系网络进行研究。首先,研究了微博关注关系网络的无标度特性和小世界特性,发现微博关注关系网络具有复杂网络的典型特征。其次对微博关注关系网络进行K-核分解,并对K-核网络的基本参数、跟随比例、中心性和度相关性等进行分析,结果表明K-核网络既具有在线社会网络的一般特征,也具有现实社会网络的特点。通过对K-核网络的社区检测,并进行中心性、互惠性、中间人角色分析,发现其网络结构具有明显的社区特性,社区内用户之间趋向于以关系驱动的形式构建网络,这为完善微博社区信息交流提供了借鉴。最后在微博关注关系网络基础上构建了用户评论网络,并研究了其复杂网络特征,实验结果表明社区内用户之间的交流与社区的社会属性具有相关性,交流最频繁的社区是以师生或同学关系构建的社区,最稀疏的是以广告营销关系构建的社区;对核心用户进行了实证分析,结果表明关注关系网与评论关系网中用户之间进行信息传递所依赖的核心用户不一致,揭示了微博社区信息交流与人际互动的特征。 论文最后对所做工作进行了总结与评述,并提炼了使用复杂网络分析方法对微博网络结构可做深入分析的若干问题,为今后的研究指明了方向。
[Abstract]:With the development of Internet, there are many different information networks including Web. Weibo (Micro-Blog) is one of them. As a new social network and network media, Weibo information dissemination speed, easy to use, has become one of the most popular services on the Internet. The most basic relationship in Weibo's network is the relationship of concern, which can be easily established between the users of Weibo, which leads to the complicated relationship between the users of Weibo. It is of great significance to study Weibo's user relationship and has a broad application prospect in public opinion monitoring, information recommendation and network marketing. In order to reveal the general law of Weibo's user relationship, this paper introduces a complex network analysis method to study the relationship network of Weibo's concern with the Sina Weibo as an example. Firstly, the scale-free and small-world characteristics of Weibo's attention relationship network are studied, and it is found that Weibo's concern relationship network has the typical characteristics of complex network. Secondly, the paper analyzes the basic parameters, following ratio, centrality and degree correlation of Weibo's concern relation network. The results show that the K- nuclear network has the general characteristics of online social network. Also has the real social network characteristic. Through the community detection of the K- nuclear network and the analysis of the centrality, reciprocity and the role of the middleman, it is found that the network structure has obvious community characteristics, and the users in the community tend to construct the network in the form of relationship drive. This provides a reference for improving Weibo's community information exchange. Finally, the user comment network is constructed on the basis of Weibo's attention relationship network, and the characteristics of its complex network are studied. The experimental results show that the communication among users in the community is related to the social attribute of the community. The community with the most frequent communication is the one constructed by teacher-student or schoolmate relationship, and the most sparse one is the one constructed by advertising marketing relationship. The empirical analysis of the core users shows that the core users who rely on the information transmission between the users in the relationship network and the comment network are not consistent, which reveals the characteristics of Weibo community information exchange and interpersonal interaction. In the end, the paper summarizes and comments on the work done, and abstracts some problems which can be deeply analyzed by using the complex network analysis method, and points out the direction of the future research.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP393.092;O157.5

【参考文献】

相关期刊论文 前10条

1 柏文洁;汪秉宏;周涛;;从复杂网络的观点看大停电事故[J];复杂系统与复杂性科学;2005年03期

2 周涛;肖伟科;任捷;汪秉宏;;网络集团度的幂律分布[J];复杂系统与复杂性科学;2007年02期

3 周涛;;在线电影点播中的人类动力学模式[J];复杂系统与复杂性科学;2008年01期

4 李楠楠;周涛;张宁;;人类动力学基本概念与实证分析[J];复杂系统与复杂性科学;2008年02期

5 余高辉;杨建梅;曾敏刚;;QQ群好友关系的复杂网络研究[J];华南理工大学学报(社会科学版);2011年04期

6 郭进利;;博客评论的人类行为动力学实证研究和建模[J];计算机应用研究;2011年04期

7 李亮;朱庆华;;社会网络分析方法在合著分析中的实证研究[J];情报科学;2008年04期

8 何黎;何跃;霍叶青;;微博用户特征分析和核心用户挖掘[J];情报理论与实践;2011年11期

9 王晓光;袁毅;滕思琦;;微博社区交流网络结构的实证分析[J];情报杂志;2011年02期

10 杨小朋;何跃;;腾讯微博用户的特征分析[J];情报杂志;2012年03期

相关博士学位论文 前2条

1 朱天;社会网络中节点角色以及群体演化研究[D];北京邮电大学;2011年

2 赖大荣;复杂网络社团结构分析方法研究[D];上海交通大学;2011年



本文编号:2325845

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2325845.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户99d02***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com