当前位置:主页 > 管理论文 > 移动网络论文 >

基于云平台的多约束流媒体内容分发方法研究

发布时间:2019-03-05 08:12
【摘要】:下一代互联网中,随着宽带和web2.0的发展,IPTV、VoD、高清视频等流媒体应用逐渐成为宽带应用的主流。流媒体应用所具有的高带宽、高访问量和高服务质量要求对以尽力而为为核心的互联网提出了巨大的挑战。然而内容分发网络CDN(Content Delivery Network)由于资源采用静态部署方式,会导致资源部署不足或资源浪费的问题。而利用P2P(Peer to Peer)进行流媒体分发,由于P2P网络节点的来去自如,会造成服务质量的不稳定。 云计算作为一种新型的网络化计算模式,以按需付费为商业模式,可为用户提供几乎无限可扩展的共享虚拟化资源,这种弹性计算的特性为解决上述CDN和P2P所面临的问题提供了机会。构建在云平台之上的流媒体分发系统,能够解决传统分发存在的问题,同时可显著降低流媒体应用提供商的运营成本,因而受到广泛的关注。 构建基于云平台的流媒体分发系统,需要面对来自各个地理区域大量高度动态的需求,为保证服务质量需要就近采用各区域中多个云服务提供商的数据中心,即需要基于分布式云数据中心架构(以下简称分布式云)来构建专门面向流媒体应用的分发网络。本文针对典型的多信道和多用户区域的应用场景,对基于分布式云的分发网络的建立和内容分发算法进行研究,考虑了分发拓扑、各云数据中心计费方式、用户位置和请求速率等因素,通过将其建模为有向斯坦纳树,给出的内容分发算法能为用户提供服务质量满足的流媒体服务,并降低分发的开销和代价。算法经过在matlab和yalmip线性规划工具箱的运行环境下进行验证和性能分析,结果显示在不同的拓扑下,给出的启发式算法均能以较低的时间复杂度获得近优解,可方便地应用于商业的流媒体内容分发系统。
[Abstract]:With the development of broadband and web2.0, streaming media applications such as IPTV,VoD, HD video have gradually become the mainstream of broadband applications in the next generation Internet. Streaming media applications with high bandwidth, high access and high quality of service requirements pose a great challenge to the best-effort Internet. However, due to the static deployment of resources in content distribution network (CDN (Content Delivery Network), it will lead to the problem of insufficient deployment of resources or waste of resources. Because P2P network nodes come and go freely, the quality of service will be unstable when P2P (Peer to Peer) is used to distribute streaming media. Cloud computing as a new network computing model, pay-on-demand as a business model, can provide users with virtually unlimited scalability of shared virtualization resources. This kind of elastic computing provides an opportunity to solve the problems faced by CDN and P2P. Streaming media distribution system based on cloud platform can solve the problems existing in traditional distribution and significantly reduce the operating costs of streaming media application providers. To build a streaming media distribution system based on cloud platform, we need to face a large number of highly dynamic needs from various geographic regions, and to ensure the quality of service, we need to adopt the data center of multiple cloud service providers in each region in order to ensure the quality of service. That is, the distributed cloud data center architecture (hereafter referred to as distributed cloud) is needed to build a distribution network for streaming media applications. In this paper, for the typical multi-channel and multi-user application scenario, the establishment of distributed cloud-based distribution network and content distribution algorithm are studied, and the distribution topology and the billing methods of cloud data centers are considered. User location and request rate are modeled as directed Steiner tree. The proposed content distribution algorithm can provide streaming media service satisfying quality of service to users and reduce the overhead and cost of distribution. The algorithm is verified and analyzed under the running environment of matlab and Yalmip Linear programming Toolbox. The results show that under different topologies, the heuristic algorithm can get the near-solution with low time complexity. Can be easily applied to commercial streaming media content distribution system.
【学位授予单位】:郑州大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP393.02

【参考文献】

相关期刊论文 前10条

1 吴吉义;平玲娣;潘雪增;李卓;;云计算:从概念到平台[J];电信科学;2009年12期

2 孙健;贾晓菁;;Google云计算平台的技术架构及对其成本的影响研究[J];电信科学;2010年01期

3 吴俊;徐溟;;公有云服务计费模式比较研究[J];电信科学;2012年01期

4 郭晓霞;张乃光;丁森华;;基于有线网的媒体定向分发技术实现初探[J];广播与电视技术;2009年09期

5 许四平;;SaaS软件即服务模型研究[J];硅谷;2009年04期

6 刘菲;张波;;浅谈中小企业私有云计算解决方案[J];硅谷;2010年14期

7 臧运港;陈光喜;;基于P2P和CDN的混合流媒体分发模型及分析[J];计算机应用研究;2010年06期

8 王洪亮;;云计算专题(2) 云计算的起源与定义[J];科技浪潮;2010年03期

9 魏婷;刘炼;;关于P2P对等网络研究的浅析[J];科技信息;2010年22期

10 方巍;文学志;潘吴斌;薛胜军;;云计算:概念、技术及应用研究综述[J];南京信息工程大学学报(自然科学版);2012年04期



本文编号:2434699

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2434699.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a0769***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com