当前位置:主页 > 管理论文 > 移动网络论文 >

一种基于邻域跟随关系的增量社区发现算法

发布时间:2019-04-02 03:04
【摘要】:社区发现能够揭示真实社会网络的拓扑结构和动态特性.目前的社区发现算法多针对静态社会网络所设计,而绝大多数真实社会网络的社区结构是动态变化的.针对动态社区发现,现有算法通常基于社区结构平稳变化的假设,无法处理演化过程中可能出现的大量社区消亡或涌现等突发事件.为解决有效并高效地发现大规模动态社会网络的社区结构的问题,提出了一种基于邻域跟随关系的社区表示模型Follow-Community,模型刻画的社区由不同角色的节点以及节点间的跟随关系组成,通过发现节点间存在的直接或间接的跟随关系,可将跟随同一个节点的节点所构成的集合归为一个社区.基于该模型提出了一种具有接近线性时间复杂度的邻域跟随算法NFA(Neighborhood Following Algorithm),遍历网络节点一次即可得到静态社会网络的社区结构.进一步扩展得到增量邻域跟随算法iNFA(incremental Neighborhood Following Algorithm).通过更新网络演化过程中相关节点的邻域跟随关系,iNFA可发现动态社会网络的社区结构及社区演化.实验结果验证了算法在大规模动态社会网络社区发现方面具有精度、效率以及稳定性的优势.
[Abstract]:Community discovery can reveal the topology and dynamic characteristics of real social networks. Most of the current community discovery algorithms are designed for static social networks, while the community structures of most real social networks are dynamic. For dynamic community discovery, the existing algorithms are usually based on the assumption that the community structure changes steadily, and can not deal with a large number of sudden events, such as community demise or emergence, which may occur in the evolution process. In order to effectively and efficiently discover the community structure of large-scale dynamic social networks, a community representation model based on neighborhood following relationship (Follow-Community,) was proposed. The community described by the model is composed of the nodes of different roles and the following relationships between nodes. By discovering the direct or indirect following relationships between nodes, the set of nodes that follow the same node can be classified into a community. Based on this model, a neighborhood following algorithm (NFA (Neighborhood Following Algorithm),) with near linear time complexity is proposed. The community structure of the static social network can be obtained by traversing the network nodes once. Further extension of incremental neighborhood following algorithm iNFA (incremental Neighborhood Following Algorithm). INFA can discover the community structure and evolution of the dynamic social network by updating the neighborhood following relationship of the relevant nodes in the evolution process of the network. Experimental results show that the algorithm has the advantages of accuracy, efficiency and stability in community discovery of large-scale dynamic social networks.
【作者单位】: 福州大学数学与计算机科学学院;福建省网络计算与智能信息处理重点实验室(福州大学);
【基金】:国家自然科学基金(61300104,61300103) 福建省教育厅科技重点项目(JK2012003) 福建省科技厅产学重大项目(2014H6014) 福建省自然科学基金(2013J01230) 福建省科技创新平台项目(2014H2005) 福建省科技平台建设项目(2009J1007)资助~~
【分类号】:TP393.09

【相似文献】

相关期刊论文 前10条

1 冯舜玺;;新书推荐:《算法分析导论》[J];计算机教育;2006年05期

2 张力,慕晓冬;计算机算法分析浅谈[J];武警工程学院学报;2002年04期

3 马安光;;飞弹问题的算法分析——2003年第10期题解[J];程序员;2003年12期

4 苏运霖;;《算法分析导论》评介[J];计算机教育;2006年07期

5 朱力强;;培养学生创新思维与能力的算法分析案例[J];计算机与信息技术;2007年11期

6 汪菊琴;;几种常见特殊方阵的算法分析与实现[J];无锡职业技术学院学报;2009年05期

7 李涵;;“算法分析与设计”课程教学改革和实践[J];中国电力教育;2010年16期

8 刘宁;管涛;;浅析案例教学法在算法分析与设计课程中的应用[J];科技风;2011年07期

9 胡峰;王国胤;;“算法分析与设计”教学模式探索[J];当代教育理论与实践;2011年12期

10 赵娟;;浅析启发式教学法在《算法分析与设计》课程中的应用[J];福建电脑;2012年06期

相关会议论文 前10条

1 俞洋;田亚菲;;一种新的变步长LMS算法及其仿真[A];通信理论与信号处理新进展——2005年通信理论与信号处理年会论文集[C];2005年

2 周颢;刘振华;赵保华;;构造型的D~2FA生成算法[A];中国通信学会通信软件技术委员会2009年学术会议论文集[C];2009年

3 赖桃桃;冯少荣;张东站;;一种基于划分和密度的快速聚类算法[A];第二十五届中国数据库学术会议论文集(一)[C];2008年

4 刘远新;邓飞其;罗艳辉;舒添慧;;ERP柔性平台下物流运输配送系统算法分析[A];第二十六届中国控制会议论文集[C];2007年

5 王树西;白硕;姜吉发;;模式合一的“减首去尾”算法[A];第二届全国学生计算语言学研讨会论文集[C];2004年

6 王万青;张晓辉;;改进的A~*算法的高效实现[A];2009全国测绘科技信息交流会暨首届测绘博客征文颁奖论文集[C];2009年

7 孙焕良;邱菲;刘俊岭;朱叶丽;;IncSNN——一种基于密度的增量聚类算法[A];第二十三届中国数据库学术会议论文集(研究报告篇)[C];2006年

8 韩建民;岑婷婷;于娟;;实现敏感属性l-多样性的l-MDAV算法[A];第二十七届中国控制会议论文集[C];2008年

9 张悦;尤枫;赵瑞莲;;利用蚁群算法实现基于程序结构的主变元分析[A];第五届中国测试学术会议论文集[C];2008年

10 王旭东;刘渝;邓振淼;;正弦波频率估计的修正Rife算法及其FPGA实现[A];全国第十届信号与信息处理、第四届DSP应用技术联合学术会议论文集[C];2006年

相关重要报纸文章 前1条

1 科文;VIXD算法分析Web异常[N];中国计算机报;2008年

相关博士学位论文 前10条

1 魏哲学;样本断点距离问题的算法与复杂性研究[D];山东大学;2015年

2 刘春明;基于增强学习和车辆动力学的高速公路自主驾驶研究[D];国防科学技术大学;2014年

3 张敏霞;生物地理学优化算法及其在应急交通规划中的应用研究[D];浙江工业大学;2015年

4 李红;流程挖掘算法研究[D];云南大学;2015年

5 盛歆漪;粒子群优化算法及其应用研究[D];江南大学;2015年

6 黄磊;高动态环境捷联惯导信号处理及高精度姿态速度算法研究[D];南京航空航天大学;2015年

7 刘新旺;多核学习算法研究[D];国防科学技术大学;2013年

8 于滨;城市公交系统模型与算法研究[D];大连理工大学;2006年

9 曾国强;改进的极值优化算法及其在组合优化问题中的应用研究[D];浙江大学;2011年

10 肖永豪;蜂群算法及在图像处理中的应用研究[D];华南理工大学;2011年

相关硕士学位论文 前10条

1 黄厦;基于改进蚁群算法的柔性作业车间调度问题研究[D];昆明理工大学;2015年

2 李平;基于Hadoop的信息爬取与舆情检测算法研究[D];昆明理工大学;2015年

3 赵官宝;基于位表的关联规则挖掘算法研究[D];昆明理工大学;2015年

4 殷文华;移动容迟网络中基于社会感知的多播分发算法研究[D];内蒙古大学;2015年

5 徐翔燕;人工鱼群优化算法及其应用研究[D];西南交通大学;2015年

6 李德福;基于小世界模型的启发式寻路算法研究[D];华中师范大学;2015年

7 郑海彬;一种面向MAPREDUCE的DATASHUFFLE的优化方法[D];苏州大学;2015年

8 赵晓寒;轮换步长PSO算法及SMVSC参数优化[D];沈阳理工大学;2015年

9 安丰洋;基于无线网络的广播算法研究[D];曲阜师范大学;2015年

10 李智明;基于改进FastICA算法的混合语音盲分离[D];上海交通大学;2015年



本文编号:2452174

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2452174.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户bc86f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com