基于P2P的恶意代码检测及防御技术研究
[Abstract]:With the development of information technology, various forms of malicious code are increasing, and now it has penetrated into every aspect of our life. Most of the existing security software relies on the support of servers to update the virus library, and these security software has always been concerned about stealing users' privacy data. In order to solve these problems, this paper combines P2P technology with malicious code detection and defense technology, and establishes a new mechanism to combat malicious code. The research includes three parts: detection, defense and response, in which the detection technology is like a spear, the defense technology is like a shield, and the response network is a warrior who uses a spear and shield to fight. These three parts complement each other and are indispensable to each other. The key technology of detection includes two points. The first point is distributed code behavior monitoring, which distributes the code monitoring to one node in P2P network, and each node cooperates with each other to "fight". The second point is the challenge test for malicious code. In order to detect the malicious code in latent period, the challenge test is used to expose the true face of malicious code as soon as possible. The key technology of defense consists of three parts. The first part is static data scanning. Compared with general scanning, the scanning based on data difference is more efficient and avoids a lot of repeated and useless scans. The second part is dynamic data protection. According to the result of response network analysis of malicious code, we can decide where to protect, and then take important index to protect it at different levels. The third part is automatic repair, on the one hand, the version is traced back by recording the modified differential data such as files, on the other hand, it is repaired by using the distributed data in P2P network. An automatic fix can be performed by creating a PDP-outer, that does not depend on the operating system to run, even if the operating system crashes. The key technologies of response include the construction of P2P-based basic network and the identification and processing of malicious code. Response network is composed of P2P network which contains many nodes. It can guarantee the security of basic network through node authentication protocol, data transmission protocol, credibility and other security mechanisms. It is the premise of malicious code to identify and process data by synchronizing distributed data on each node to ensure the consistency of data such as black list and white list. The nodes in the behavior monitoring response network can generate the behavior log and so on. In this paper, several methods including neural network are discussed to process these data, and then the autonomous learning and decision-making are carried out. After more than a year of research and experiments, many research results have been achieved in this subject, including the following three aspects: 1. In this paper, a new malicious code detection and defense method is proposed, which solves the problem of relying on the update of server. Because it is central and open source, it solves the problem that privacy data can be stolen; 2. In order to compare the detection and defense methods proposed in this paper with the general methods, a simulation verification program is developed, which can simulate the process of antagonism between security software and malicious code. In this paper, we apply for an invention patent based on the detection and defense method proposed in this paper, a malicious code detection and defense method, which is in the state of acceptance at present.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP393.08
【共引文献】
相关期刊论文 前10条
1 秦磊磊;李素媛;陈聪;张三元;;宜昌地区大米中镉含量的调查研究[J];现代农业科技;2011年17期
2 唐燕玉;;几个不等式的概率函数证明方法[J];安庆师范学院学报(自然科学版);2010年04期
3 梁巧萍,刘昕;印刷画面的色差分析[J];包装工程;2005年03期
4 范兴华;戴美凤;;独立学院概率统计教学的实践与研究[J];赤峰学院学报(自然科学版);2010年09期
5 韩伟;;概率统计教学研究[J];赤峰学院学报(自然科学版);2012年06期
6 程靖;;概率统计教学方法的几点体会[J];巢湖学院学报;2012年03期
7 姚道洪;杨德志;;随机事件的独立性浅析[J];长江大学学报(自然科学版);2011年10期
8 伍亿;;试题和成绩分析及程序实现[J];重庆电子工程职业学院学报;2010年05期
9 沈永梅;丁卫林;;全概率公式与贝叶斯公式的教学方法研究[J];时代教育(教育教学);2010年05期
10 刘焕香;;概率论与数理统计课程的教学探索[J];时代教育(教育教学);2010年09期
相关会议论文 前3条
1 刘欣;;浅谈贝叶斯公式的一种教学设计[A];第九届沈阳科学学术年会论文集[C];2012年
2 牟瑞芳;;系统风险理论的基本问题[A];风险分析和危机反应的创新理论和方法——中国灾害防御协会风险分析专业委员会第五届年会论文集[C];2012年
3 黄文生;招伟文;杨云茜;;近50年顺德气象灾害特征分析[A];第32届中国气象学会年会S6 应对气候变化、低碳发展与生态文明建设[C];2015年
相关博士学位论文 前10条
1 李莲芝;汽车变速箱质量问题追溯的理论方法研究[D];吉林大学;2011年
2 游源;MPT建模方法研究及其应用[D];华中科技大学;2011年
3 吕敬亮;几类随机生物种群模型性质的研究[D];哈尔滨工业大学;2011年
4 张俊;迷宫流道灌水器水力与抗堵性能评价及结构优化研究[D];西安交通大学;2009年
5 孟祥印;飞行甲板总布置设计中的若干问题研究[D];哈尔滨工程大学;2011年
6 徐驰;基于摩擦力在线测量的化学机械抛光终点检测技术研究[D];大连理工大学;2011年
7 金晓军;双相不锈钢管道焊接质量控制和安全评定的研究[D];天津大学;2004年
8 刘少东;星载有限电扫描天线的研究[D];西安电子科技大学;2005年
9 马震;游客感知景区服务质量评价研究[D];西北大学;2010年
10 林峗;论粮食供求与粮食补贴[D];中共中央党校;2010年
相关硕士学位论文 前10条
1 曲福娣;基于点估计法的电力系统随机潮流计算方法[D];东北电力大学;2011年
2 韩晓明;基于ISO/IEC18000-6 Class C RFID阅读器数字系统设计[D];电子科技大学;2011年
3 付明明;基于PCI总线的数据采集系统设计与实现[D];河北科技大学;2011年
4 黄静;山东省主要作物灌溉定额研究[D];山东农业大学;2011年
5 贾松松;基于排队论的港口最佳锚位数研究[D];大连海事大学;2011年
6 吴坎坷;客船楼梯处人员疏散模型研究[D];大连海事大学;2011年
7 侯海苏;河南省高新技术产业发展研究[D];山西财经大学;2011年
8 陈慕杰;模糊网络进度计划技术及风险研究[D];河北工程大学;2011年
9 吕东;无线传感网不同拓扑结构的时间同步算法研究[D];辽宁大学;2011年
10 刘建树;高速列车转向架构架频域疲劳寿命研究[D];西南交通大学;2011年
,本文编号:2458658
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2458658.html