Web服务组合关键机制
[Abstract]:On the Internet, more and more network resources, including storage resources, computing resources, application resources and software resources, can be acquired and accessed, so that the Internet is gradually becoming an open distributed computing platform. and the service-oriented computing (SOC) and the service-oriented architecture (SOA) are the latest development directions of the current distributed computing and software development, can help enterprises or Internet users to develop applications and business processes more flexibly, quickly and at low cost, The combination of Web services is the key technology for service computing. With the development of cloud computing, e-commerce and Internet, the environment of the Web service combination has changed. In order to achieve universality, many QoS-based Web service combination methods are designed for a general-purpose environment, and some new problems and machines in a specific environment are not considered In this paper, the environment of Web service combination is subdivided, and the combination of Web services based on QoS is studied. The emphasis is to improve the traditional method to adapt them to these specific rings. The new method is put forward to make full use of the advantages of these specific environments and to further study the new problems brought by the specific environment, and put forward the corresponding solution The main contents and contribution of this paper are as follows: next:1. Since the Internet is made up of sub-networks with different delays, users at different network locations have the same service quality as the same Web service There is a difference. However, the service provider typically only provides an average of the service QoS as the service's evaluation index, resulting in the fact that most of the current service combining methods do not take into account the network transmission performance and bring the Web services to users at different locations In addition, in the case of limited capacity of Web service processing, multiple physical services are used to satisfy the service request of multiple users, not only can improve the reliability of the combined service and the ability to resist the damage, but also can remarkably reduce the total service of the Web combination service. However, the existing methods in such a case study the dynamic combination of services In this paper, by using the queuing network model, the quantitative index of the network QoS is introduced, the constraint conditions and the upper and lower limits of the optimization variables are given, and a runtime service group is proposed. the method comprises the following steps of: firstly, selecting a group of dominant entity services by using a non-linear optimization theory, The experiment shows that the method proposed in this paper is suitable for the dynamic change of the parameters in terms of the optimality and the efficiency of the implementation. 2. The previous research approach focuses on the study of atomic Web services or cluster services in terms of energy efficiency, while ignoring the entire portfolio In this paper, the energy consumption of the whole combined service is calculated according to the energy consumption model of the Web candidate service. The method provides three optimization objectives, and the first optimization goal is to perform time fast: the combination method of energy consumption perception cannot be improved with a large reduction in execution time The second optimization goal is high reliability: some of the atomic services in the combined service may have a lower service rate, but the reliability is high, so this type of atomic service also has the advantage that they are combined to lead to higher Overall reliability. The third optimization goal is low energy consumption: the M/ M/ c model used in this paper is closer to the actual situation and can reduce the combined service more by selecting the service according to the energy consumption model In order to speed up the speed of the solution, the hybrid algorithm is used to calculate the maximum energy consumption. At last, the energy-saving efficiency test of service is carried out under different service scale (the number of abstract service and the number of candidate service). The result shows that the method can reduce the combination greatly on the premise of satisfying the service request. the energy consumption of service.3. In the Internet environment, the combination of Web services has two kinds of uncertainty, one is the uncertainty of service call results, and the other is Q The uncertainty of S. The previous study uses the discrete time Markov decision process to model the service combination with uncertainty, and the QoS aggregation value of the service is used as the real-time compensation, and finally the service is obtained. The optimal strategy of the combination. This requires that the probability of transition for each state must be known in advance, but the transfer almost The rate is hard to get. In addition, previous studies have not taken into account the value of the QoS This paper, based on the advantages of the model proposed by the relevant literature, further extends the service combination model, and uses the QoS value with the probability distribution to model the service combination. The method proposed in this paper is obtained by using the machine learning algorithm. The experimental results show that the learning cycle of the method 4. The relationship between the QoS attributes of the service is independent from each other in order to simplify the study, so it is not good to measure the waiting time. The method of this paper takes into account the correlation of the QoS attributes of the service, so the assignment of the QoS weight can be more accurate reflection of the quality of service. In addition, the business capacity of the enterprise has been the highest priority for its development since it has matched the IT level, and SOA is the promotion The key technology of this match. However, if there is no one that can connect to the strategic, tactical, and operational aspects, the advantage of using SOA will be hard to be in the enterprise The business layer of the industry is presented. In view of the above two factors, this paper presents an improved analytic hierarchy process for the combination of services, which combines the decision of the strategic, tactical and operational aspects, taking into account the interdependence of the QoS attributes and the service group. The combined scheme is sorted, where you can select the most appropriate
【学位授予单位】:北京邮电大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TP393.09
【相似文献】
相关期刊论文 前10条
1 王晓玲,郭志懋,周傲英;Web服务组合的基于文法的消息处理[J];计算机学报;2005年04期
2 王勇;张煜;尹瑞;;Web服务组合中商业事务处理的研究[J];小型微型计算机系统;2006年01期
3 郭玉彬;杜玉越;奚建清;;Web服务组合的有色网模型及运算性质[J];计算机学报;2006年07期
4 蒋运承;汤庸;;服务组合的质量估计模型[J];小型微型计算机系统;2006年08期
5 刘必欣;周斌;贾焰;;Web服务组合支撑平台StarService Flow的研究与实现[J];计算机工程与科学;2006年12期
6 陈红;;基于参考网的Web服务组合模型[J];计算机应用;2006年12期
7 单保华;韩燕波;李厚福;胡海涛;;一种验证业务级服务组合可执行能力的方法[J];计算机科学;2006年03期
8 廖志军;高春鸣;;基于π演算的异构Web服务组合的互操作[J];中国科技信息;2007年06期
9 周宇;张鹏程;李必信;;一种Web服务组合的数学模型[J];东南大学学报(自然科学版);2007年04期
10 王国法;孙晓亭;王昆;;Web服务组合中的服务选择研究[J];计算机与信息技术;2007年06期
相关会议论文 前10条
1 段友祥;相鹏;;Web服务组合引擎的研究与实现[A];第二十三届中国数据库学术会议论文集(研究报告篇)[C];2006年
2 吴亮;袁兆山;;基于模糊Petri网的语义Web服务组合[A];全国第20届计算机技术与应用学术会议(CACIS·2009)暨全国第1届安全关键技术与应用学术会议论文集(上册)[C];2009年
3 赵慧杰;;Web服务的组合计划与优化[A];2007年中国智能自动化会议论文集[C];2007年
4 张玉军;李心科;;面向自然语言描述的Web服务组合[A];2011中国仪器仪表与测控技术大会论文集[C];2011年
5 周相兵;马洪江;杨兴江;;一种基于云计算的语义Web服务组合模型研究[A];2009年全国开放式分布与并行计算机学术会议论文集(上册)[C];2009年
6 付晓东;邹平;;基于元流程的Web服务组合例外处理模型[A];第二十六届中国控制会议论文集[C];2007年
7 江琦;奚宏生;殷保群;;网络新媒体服务系统事件驱动的动态服务组合[A];第二十九届中国控制会议论文集[C];2010年
8 徐明迪;赵恒;张焕国;;面向可靠性的动态Web服务组合选择策略研究[A];CCF NCSC 2011——第二届中国计算机学会服务计算学术会议论文集[C];2011年
9 周献中;吴奎;萧毅鸿;;基于蚁群算法的Web服务自动组合[A];决策科学与评价——中国系统工程学会决策科学专业委员会第八届学术年会论文集[C];2009年
10 徐其兴;余镇危;;一种基于移动Agent的服务组合模型[A];2006年全国开放式分布与并行计算学术会议论文集(二)[C];2006年
相关重要报纸文章 前5条
1 本报记者 张茜 通讯员 孟庆超;打好服务组合拳助力民企大发展[N];莱芜日报;2014年
2 记者 俞永均 通讯员 方平原 王芬;外经贸部门打出金融服务组合拳[N];宁波日报;2012年
3 高智 本报记者 王彤;许昌保险业:亮出服务组合拳[N];中国保险报;2014年
4 沈建苗 编译;利用现有服务构建SOA应用[N];计算机世界;2006年
5 记者 萧雨林 通讯员 张兴汉 郭毕;打好服务组合拳 提质增效站排头[N];襄阳日报;2014年
相关博士学位论文 前10条
1 冯名正;Web服务组合关键技术研究[D];东南大学;2006年
2 何丰;语义Web服务组合若干关键技术研究[D];东华大学;2008年
3 周涛;基于策略的服务组合关键技术研究及应用[D];浙江大学;2012年
4 吴钟;面向多边协同的Web服务组合市场决策与优化管理研究[D];武汉理工大学;2013年
5 胡佳;语义Web服务自动组合及验证的研究[D];天津大学;2010年
6 马小宁;铁路信息共享的Web服务组合关键技术研究[D];北京交通大学;2010年
7 包力;Web服务组合形式化建模与验证研究[D];大连海事大学;2009年
8 刘莉平;动态Web服务组合关键技术研究[D];中南大学;2011年
9 龙军;基于信任感知与演化的服务组合关键技术研究[D];中南大学;2011年
10 张杨;语义Web服务组合的可信性度量研究[D];重庆大学;2011年
相关硕士学位论文 前10条
1 刘磊;Web服务组合的性质检验与实现[D];电子科技大学;2009年
2 史斌;对等模式下个性化Web服务组合和匹配算法研究[D];山东大学;2009年
3 陈阳;Web服务组合模型及相关技术的研究[D];哈尔滨工程大学;2008年
4 周真建;语义Web服务组合的挖掘[D];南昌大学;2009年
5 魏守贤;动态服务组合在社区服务平台中的研究与应用[D];浙江工商大学;2011年
6 朱嘉鲁;基于移动Agent的Web服务组合[D];中国科学院研究生院(成都计算机应用研究所);2006年
7 褚娟;Web服务组合的全局约束分析[D];山东大学;2007年
8 宋驰;基于用户偏好的启发式Web服务组合的研究与实现[D];北京邮电大学;2008年
9 张健;普适环境下一种分布式可靠服务组合机制研究[D];上海交通大学;2010年
10 余洋;Web服务组合的调解技术研究与应用[D];解放军信息工程大学;2011年
,本文编号:2474009
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2474009.html