基于核方法的网络入侵检测若干研究
[Abstract]:With the increasing popularity of the network, the problem of network security is becoming more and more prominent. How to ensure the security of the network system has become an urgent problem to be solved. The combination of kernel principal component analysis (KPCA),) particle swarm optimization (PSO) and support vector machine (SVM) in intrusion detection not only solves the redundancy of data information, but also avoids the blindness of SVM parameter selection. Further improve the performance of intrusion detection. This paper mainly studies the application of kernel method in intrusion detection. Firstly, the KPCA algorithm is studied and analyzed, and a hybrid kernel principal component analysis algorithm is proposed. Secondly, the parameter selection of SVM is studied, and two new optimization algorithms are proposed on the basis of PSO algorithm. The main innovations of this paper are as follows: (1) A MKPCA (Multiple Kernel Principal Component Analysis,MKPCA algorithm based on hybrid kernel function is proposed. In this algorithm, the feature extraction of intrusion detection data is carried out, and the dimension of the data is reduced under the condition of ensuring the integrity of the data information. The kernel function of the MKPCA algorithm proposed in this paper is not a single kernel, but combines the binomial kernel function of the global kernel function (multinomial kernel function) and the local kernel function (Gao Si kernel function) to improve the nonlinear feature extraction ability of KPCA (Kernel PrincipalComponent Analysis, MKPCA). Through the experiment of MKPCA feature extraction, it can be seen that the correctness of classification of the original data after feature extraction is improved, and the training and testing speed of the data is accelerated at the same time. (2) an intrusion detection algorithm based on dynamic particle swarm optimization (SVM (Dynamic Particle Swarm Optimization-SupportVector Machine, DPSO-SVM) is proposed. The dynamic inertia weight function and acceleration factor function are introduced to enhance the search ability of PSO algorithm and balance the global search ability and local search ability of PSO algorithm. The algorithm is applied to the parameter optimization of SVM. In this paper, the DPSO-SVM algorithm is used to classify the intrusion data processed by MKPCA. The results show that the algorithm improves the accuracy of classification and accelerates the convergence speed of the algorithm to the optimal solution. (3) A SVM (Dynamic Chaos Particle Swarm Optimization-Support Vector Machine, DCPSO-SVM intrusion detection algorithm based on dynamic chaotic particle swarm optimization is proposed. This method combines chaotic search with the dynamic particle swarm optimization algorithm proposed in this paper. DCPSO not only dynamically selects the main parameters of PSO algorithm, but also improves the diversity of population and ergodicity of particle search, and further improves the accuracy of PSO algorithm. Convergence rate. Through the experiment of DCPSO-SVM in intrusion detection, it can be seen that the classification accuracy and convergence efficiency of the algorithm have been improved.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP393.08
【相似文献】
相关期刊论文 前10条
1 经玲,朱甫芹,鲁绯,孙君社;腐乳感官和理化品质的核主成分分析[J];中国农业大学学报;2004年03期
2 赵丽红;孙宇舸;蔡玉;徐心和;;基于核主成分分析的人脸识别[J];东北大学学报;2006年08期
3 薛宁静;;基于测地距离的核主成分分析方法[J];微计算机信息;2010年31期
4 刘嵩;罗敏;张国平;;基于对称核主成分分析的人脸识别[J];计算机应用;2012年05期
5 何振学;张贵仓;谯钧;杨林英;;对称核主成分分析及其在人脸识别中的应用[J];计算机工程;2013年03期
6 万星火;金永超;郑俊玲;;基于核主成分分析的环境质量综合评价模型[J];电脑知识与技术;2014年09期
7 殷俊;周静波;金忠;;基于余弦角距离的主成分分析与核主成分分析[J];计算机工程与应用;2011年03期
8 孟凡荣;杨开睿;梁志贞;;鲁棒的加权核主成分分析算法[J];计算机应用研究;2013年07期
9 刘权;郭武;;基于核主成分分析的话题跟踪系统[J];清华大学学报(自然科学版);2013年06期
10 贾亚琼;;基于核主成分分析的图像去噪[J];科学技术与工程;2009年19期
相关会议论文 前3条
1 薛永刚;朱靖波;魏刚;;基于核主成分分析的文本分类[A];第二届全国信息检索与内容安全学术会议(NCIRCS-2005)论文集[C];2005年
2 刘权;郭武;;基于核主成分分析的话题跟踪系统[A];第十二届全国人机语音通讯学术会议(NCMMSC'2013)论文集[C];2013年
3 徐扬;陈实;田玉敏;;基于核主成分分析的步态识别[A];2008'中国信息技术与应用学术论坛论文集(二)[C];2008年
相关硕士学位论文 前10条
1 马文青;一种加权核主成分分析及其相关参数的选取[D];大连海事大学;2009年
2 刘素京;基于核主成分分析和支持向量机的飞机舱音信号的识别[D];南京航空航天大学;2009年
3 贾亚琼;基于核主成分分析的图像降噪方法研究[D];华南理工大学;2010年
4 万康康;基于核主成分分析的原像问题研究[D];南京理工大学;2014年
5 孙宗宝;基于软间隔支持向量机和核主成分分析的入侵检测研究[D];哈尔滨理工大学;2007年
6 王辉;基于核主成分分析特征提取及支持向量机的人脸识别应用研究[D];合肥工业大学;2006年
7 沈徐辉;基于核主成分与支持向量机的体内药物代谢预测[D];浙江大学;2011年
8 赵春标;工业经济监测预测模型的研究与应用[D];合肥工业大学;2012年
9 张立;基于核主成分分析和多重分形的地球化学综合异常信息提取[D];成都理工大学;2014年
10 刘孔源;基于核方法的网络入侵检测若干研究[D];南京邮电大学;2014年
本文编号:2475304
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2475304.html