基于SVM的微博情感倾向性分析研究
[Abstract]:With the advent of the Web2.0 era, the development of the network has entered all areas of people's lives. In recent years, the emergence of Weibo has made life more abundant. The growth of Weibo's influence has attracted a large number of scholars to study Weibo customers in depth, and emotional word recognition and emotional analysis have become an important topic. In Weibo's open platform, the function is to access information, or to post information to others to see. At the same time, with the diversification of published information, new problems arise, such as the emergence of emotional neologisms and the analysis of emotional polarity of Weibo sentences. The emergence of new words produces a lot of "scattered strings" and "fragments" that are difficult to recognize for Chinese word segmentation. The text that distinguishes the emotional tendency of Weibo guest in emotional analysis belongs to the judge of positive, negative and neutral. The emotional tendency of these texts can master the emotions of netizens, not only have certain commercial value, but also benefit the society, but also help us to perfect in the fields of public opinion monitoring, vocabulary updating, natural language processing and so on. Tens of thousands of Chinese Weibo users refresh their information every day, and the generation of Weibo emotional words and the analysis of polarity all arise. It is very important and urgent to do a good job in understanding the attitude of users. Through the data provided by the experiment, emotional word recognition through conditional random field, part-of-speech tagging, combining with the characteristics of context information, the feature vector is constructed, and the training model of corpus data is constructed and tested. Finally, the correct (Precision), recall rate (Recall) and F-value of emotional words are obtained. Effective and correct recognition of Weibo emotional words is the premise and basis for judging the emotional tendency of Weibo text. Based on the knowledge of Chinese information processing and natural language, combined with the laboratory research on the discovery of emotional neologisms and the analysis of emotional tendencies, this paper discusses the various relationships related to emotional tendencies. It is based on the existing analysis of Weibo emotional tendency judgment. The ultimate purpose of this paper is to improve the accuracy, recall rate and F-value of the data results, so as to lay a foundation for further research. The experimental data are different from the Weibo corpus given by the project, and the training and test data of emotional word recognition and emotional tendency analysis are different. The experimental results also verify that the method used in this paper is feasible. The experimental results show that the correct rate of emotional word recognition is 34.21%, the recall rate is 0.11%, and the F value is 0.002%. The results show that the overall recognition rate is not high, but it also lays a good foundation for the next step. The correct rate, recall rate and F value of emotional sentence polarity discrimination were 84.87%, 65.18% and 77.27%, respectively. the emotional tendency of Chinese Weibo was preliminarily explored in this study.
【学位授予单位】:中原工学院
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP391.1;TP393.092
【相似文献】
相关期刊论文 前10条
1 邓森;杨军锋;郭明威;郭创;;基于模糊SVM和虚拟仪器的模拟电路故障诊断研究[J];计算机测量与控制;2011年04期
2 郭有贵;曾萍;朱建林;;交-交矩阵变换器SVM的新颖调制模式(英文)[J];系统仿真学报;2009年22期
3 吴学文;索丽生;王志坚;;基于SVM的入库径流混沌时间序列预测模型及应用[J];系统仿真学报;2011年11期
4 程博,吴国平;基于SVM的脱机手写汉字识别[J];现代计算机;2005年09期
5 钟明霞;;基于神经网络和SVM的微钙化簇分类方法[J];计算机时代;2008年05期
6 宋国明;王厚军;姜书艳;刘红;;一种聚类分层决策的SVM模拟电路故障诊断方法[J];仪器仪表学报;2010年05期
7 张淑雅;赵一鸣;李均利;;基于SVM的图像分类算法与实现[J];计算机工程与应用;2007年25期
8 宋国明;王厚军;刘红;姜书艳;;基于提升小波变换和SVM的模拟电路故障诊断[J];电子测量与仪器学报;2010年01期
9 王志明,蒋加伏,唐贤瑛;基于SVM的小波图像去噪[J];湖南科技学院学报;2005年05期
10 解焱陆,吴礼福,戴蓓劏,李辉;基于SVM评分融合的分类短语音话者确认系统[J];数据采集与处理;2005年02期
相关会议论文 前10条
1 滕卫平;胡波;滕舟;钟元;;SVM回归法在西太平洋热带气旋路径预报中的应用研究[A];S1 灾害天气研究与预报[C];2012年
2 王红军;徐小力;付瑶;;基于SVM的旋转机械故障诊断知识获取[A];第八届全国设备与维修工程学术会议、第十三届全国设备监测与诊断学术会议论文集[C];2008年
3 陈兆基;杨宏晖;杜方键;;用于水下目标识别的选择性SVM集成算法[A];中国声学学会水声学分会2011年全国水声学学术会议论文集[C];2011年
4 程丽丽;张健沛;杨静;马骏;;一种改进的层次SVM多类分类方法[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年
5 左南;李涓子;唐杰;;基于SVM的肖像照片抽取[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年
6 宁伟;苗雪雷;胡永华;季铎;张桂平;蔡东风;;基于SVM的无参考译文的译文质量评测[A];机器翻译研究进展——第四届全国机器翻译研讨会论文集[C];2008年
7 刘旭;罗鹏飞;李纲;;基于拟合角特征及SVM的雷达辐射源个体识别[A];全国第五届信号和智能信息处理与应用学术会议专刊(第一册)[C];2011年
8 罗浩;谢军龙;胡云鹏;;地源热泵空调系统故障诊断中SVM的应用[A];全国暖通空调制冷2008年学术年会资料集[C];2008年
9 刘闪电;王建东;;权重部分更新的大规模线性SVM求解器[A];2009年研究生学术交流会通信与信息技术论文集[C];2009年
10 王舰;汤光明;;基于SVM的图像隐写检测分析[A];第八届全国信息隐藏与多媒体安全学术大会湖南省计算机学会第十一届学术年会论文集[C];2009年
相关硕士学位论文 前10条
1 张汉女;基于SVM的海岸线提取方法研究[D];东北师范大学;2010年
2 刘军;基于SVM的半监督网络入侵检测系统[D];复旦大学;2009年
3 张永俊;基于SVM的增量入侵检测方法研究[D];西安科技大学;2013年
4 田幂;基于概率SVM的肿瘤预警系统的设计与实现[D];吉林大学;2013年
5 王硕;基于广义S变换和SVM的电压暂降检测与识别方法研究[D];燕山大学;2013年
6 杨涛;基于SVM的中国医药制造企业财务危机预警研究[D];厦门大学;2009年
7 周洪利;基于SVM的网络信息过滤研究[D];山东师范大学;2008年
8 齐振东;基于SVM的地基土承载力预测[D];吉林大学;2008年
9 任琼;基于SVM的余杭生态公益林类型的遥感分类研究[D];南京林业大学;2008年
10 杨洋;基于SVM的印刷品缺陷在线检测[D];华中科技大学;2012年
本文编号:2475396
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2475396.html