粗糙集属性约简方法在医疗诊断中的应用研究
发布时间:2018-01-05 10:22
本文关键词:粗糙集属性约简方法在医疗诊断中的应用研究 出处:《苏州大学》2015年硕士论文 论文类型:学位论文
更多相关文章: 粗糙集 属性约简 启发规则 遗传算法 医疗诊断
【摘要】:如今,医院积存了海量的医疗诊断数据,如何利用先进的数据处理技术对其开发利用,辅助医生诊断,已经成为当今医疗事业发展的一个重要方向。目前医疗诊断的主要方法是根据患者的症状进行临床诊断。但随着疾病种类的增多,症状之间的干扰性大大增强,这给医生带来很大负担。本文主要针对医疗诊断问题及粗糙集属性约简算法进行研究,提出了两种属性约简算法辅助医疗诊断。主要工作如下:1)针对HORAFA算法以及现有改进算法所获得的结果中经常出现属性权值相同的问题,本文结合医疗诊断数据特征,改进算法的启发规则及属性删除操作,提出一种改进的基于差别矩阵的启发式约简算法。实验结果表明,改进算法能够提高约简效率,获得更优约简。2)为了解决大规模医疗诊断数据的约简问题,提出一种自适应遗传约简算法。该算法利用改进的属性权值构造个体适应度函数;使用新的最优选择策略丰富群体种类,避免陷入局部极值;引入属性相似度概念减少交叉操作,且降低了适应度函数的计算次数;改进变异操作,避免个体中存在权值相同的属性。仿真实验表明,该算法在属性数目繁多、数据量庞大的信息系统中更适用。3)基于上述的遗传约简算法,对2型糖尿病数据进行属性约简,提取关键症状,辅助医生诊断,减少误诊和漏诊。
[Abstract]:Now, the hospital has accumulated a large amount of medical diagnosis data, how to use the advanced data processing technology to develop and use to assist doctors in diagnosis. At present, the main method of medical diagnosis is to make clinical diagnosis according to the symptoms of the patients. But with the increase of the types of diseases, the interference between the symptoms is greatly enhanced. This brings a great burden to doctors. This paper mainly focuses on medical diagnosis problem and rough set attribute reduction algorithm. Two attribute reduction algorithms are proposed to assist medical diagnosis. The main work is as follows: 1) aiming at the problem of the same attribute weight value in the results of HORAFA algorithm and existing improved algorithm. In this paper, an improved heuristic reduction algorithm based on discriminant matrix is proposed by combining the features of medical diagnosis data, the heuristic rules and attribute deletion operations of the algorithm are improved. The improved algorithm can improve the efficiency of reduction and obtain better reduction. 2) in order to solve the problem of large-scale medical diagnosis data reduction. An adaptive genetic reduction algorithm is proposed, in which the individual fitness function is constructed by using the improved attribute weights. The new optimal selection strategy is used to enrich population types and avoid falling into local extremum. The concept of attribute similarity is introduced to reduce crossover operations and to reduce the number of computation of fitness function. The simulation results show that the algorithm is more suitable in the information system with a large number of attributes and large amount of data. 3) based on the above genetic reduction algorithm. The data of type 2 diabetes were reduced, the key symptoms were extracted, the diagnosis was assisted, and the misdiagnosis and missed diagnosis were reduced.
【学位授予单位】:苏州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R4;TP18
【参考文献】
相关期刊论文 前10条
1 胡方;黄建国;褚福照;;基于粗糙集的武器系统灰色关联评估模型[J];兵工学报;2008年02期
2 瞿爱珍,庄天戈;计算机辅助医学诊断系统的数据挖掘和知识发现研究[J];国外医学.生物医学工程分册;2002年03期
3 高举红;赵天一;;基于粗糙集理论的危险品运输风险分析[J];安全与环境学报;2015年01期
4 黄国顺;曾凡智;陈广义;文翰;;一种Hu差别矩阵属性约简的高效算法[J];华中科技大学学报(自然科学版);2012年04期
5 张俊鹏;贺建峰;马磊;;基于最优风险与预防模型的医疗数据挖掘算法[J];计算机工程;2011年22期
6 王国胤;姚一豫;于洪;;粗糙集理论与应用研究综述[J];计算机学报;2009年07期
7 富震;潘伟;;基于自适应遗传约简算法的雷达故障诊断[J];控制与决策;2010年04期
8 余鹰;苗夺谦;刘财辉;王磊;;基于变精度粗糙集的KNN分类改进算法[J];模式识别与人工智能;2012年04期
9 孙晓燕;陈姗姗;巩敦卫;张勇;;基于区间适应值交互式遗传算法的加权多输出高斯过程代理模型[J];自动化学报;2014年02期
10 陈曦;雷健;傅明;;基于改进遗传算法的粗糙集属性约简算法[J];计算机工程与设计;2010年03期
,本文编号:1382686
本文链接:https://www.wllwen.com/huliyixuelunwen/1382686.html
最近更新
教材专著