胎盘细胞的分离培养及其与母血、脐血细胞嵌合情况的研究
[Abstract]:In recent years, stem cells have shown broad application prospects in regenerative medicine, cell replacement therapy and drug screening due to their dual characteristics of self-renewal and multi-directional differentiation potential. But in modern medicine, there are still many diseases which can not be cured completely by the current medical level. Some of them are related to the necrosis of cells, tissues and even organs, such as diabetes, immune dysfunction, Alzheimer's disease and Parkinson's disease. The emergence and gradual in-depth study of stem cells also bring about the cure of these diseases. The main sources and potential sources of stem cells include blastocysts, fetal tissues, umbilical cord blood and adult tissues. In clinical trials and applications of many types of stem cells, the theoretical basis and technical methods of hematopoietic stem cell transplantation are relatively mature. Hematopoietic stem cell transplantation is currently used in most malignant hematological malignancies. Hematopoietic stem cell transplantation mainly includes autologous transplantation and allogeneic transplantation. In the past, the ideal source of hematopoietic stem cells was bone marrow and peripheral blood, but it came from adult and therefore dry. Since the 1980s, umbilical cord blood has attracted the attention of researchers because of its abundant hematopoietic stem cell content. The clinical application of umbilical cord blood-derived stem cells has developed rapidly, and they are ideal for hematopoietic reconstruction and immune system reconstruction. Umbilical cord blood stem cells have abundant sources and low immunogenicity, but the small number of cells contained in a single umbilical cord blood limits the scope of its clinical application. Therefore, to find a wider and more suitable cell source becomes a breakthrough in the clinical application of hematopoietic stem cell transplantation. The placenta is usually a waste produced during childbirth. However, in recent years, many studies have found that many kinds of stem, progenitor cells exist in the placenta, that is, the placenta. As a rich stem-progenitor cell bank, it has attracted more and more attention and exploration. The existence of a large number of cell groups shows its great potential in the future clinical application of regenerative medicine. Based on the existing experimental studies and related results, we can infer that more in-depth and detailed study of placental-derived cells and a full understanding of their biological characteristics are crucial to the selection and promotion of their early clinical application. The main purpose of this study is to detect the total number of mononuclear cells in the placenta and the number of CD34 + cells in the placenta and to compare them with a single umbilical cord. The number of cells in blood was compared, the colony formation of cells from placenta and umbilical cord blood was observed, the HLA types of placenta-derived cells, maternal blood-derived cells and umbilical cord blood-derived cells were detected respectively, and the degree of chimerism between placenta-derived cells and maternal blood and umbilical cord blood cells was detected by STR-PCR, which provided relevant theory for clinical application in the future. This study is divided into the following two parts: 1. The total number of cells in placenta and umbilical cord blood and the proportion of CD34 + cells in them. With the approval of the committee, we collected the umbilical cord blood and its placenta from five healthy full-term cesarean mothers. During delivery, the umbilical cord blood was extracted and placed in a disposable plastic blood bag for temporary preservation, centrifuged and counted the cells in the lower layer. Push and collect the blood in the placental vein, perfuse the placental vein system with saline containing 10g/L AMD3100, clamp the umbilical artery and incubate for 30 minutes, collect the perfusion fluid, centrifuge the blood and perfusion fluid in the placental vein and count the cells in the lower layer. The number and proportion of CD34 + cells in cord blood and placenta derived cells were measured by flow cytometry. The cord blood and placenta derived cells were added into 1.1mL medium by 5 *104 and inoculated into 1.1mL medium respectively. The results showed that the total number of cells, the number of CD34 + cells and their proportion in placenta were significantly higher than those in umbilical cord blood. Colony culture dishes of placenta and umbilical cord blood were observed on day 6 and day 14 after inoculation. Good colony formation can be observed. However, at the same inoculation density as umbilical cord blood cells, the number of colonies formed by placental-derived cells is relatively small. Placenta-derived cells have a variety of colony-forming abilities, and colony-forming ability is an important assessment of the differentiation and proliferation potential of hematopoietic stem-progenitor cells. 2. HLA detection of placenta-derived cells and detection of their chimerism with maternal and umbilical cord blood-derived cells. The HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 loci of placenta-derived cells, maternal blood cells and umbilical cord blood cells were detected respectively. The results of HLA detection showed that two of the five samples in this study contained maternal components, and the other three showed that placenta-derived cells and umbilical cord blood cell loci were identical. The results of TR-PCR showed that all five placenta samples had maternal component chimerism, and HLA detection suggested that the maternal component chimerism rate was especially high in two cases with maternal component. The results suggest that the current isolation methods do mix maternal-derived components in the placenta, and further research is needed to determine whether the maternal-derived components have an impact on clinical transplantation outcomes. At the same time, HLA and STR-PCR were used to detect the origin of placental cells and their chimerism with maternal and fetal components, and the small chimerism ratio was detected more accurately, which laid a foundation for the potential clinical application feasibility and method selection. Foundation.
【学位授予单位】:中国人民解放军军事医学科学院
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R457.7
【相似文献】
相关期刊论文 前10条
1 孙清,孙卓贵,施秀红;产后大面积胎盘残留48天一例[J];临床误诊误治;2000年03期
2 王雪莲,黄艳君,范丽华,孟凡悦,王敏;筒状胎盘完全植入1例[J];中国实用妇科与产科杂志;2003年01期
3 卫远山;;乱食鲜胎盘可能惹祸端[J];家庭医学(下半月);2011年04期
4 贺茜,沙金燕,张黎明,陈雄;胎盘组织中促肾上腺皮质激素释放激素的免疫组化研究[J];第二军医大学学报;2000年12期
5 罗支农,韦怀新,黄新生,王新玉,郭会平,刘刚纯,曹晓桦,郭静;彩色多普勒能量图在晚期产后胎盘滞留诊断中的应用[J];中国超声医学杂志;2000年08期
6 刘霞,李力;妊高征中胎盘血管内皮生长因子的表达及其与胎盘释放血管活性物质的关系[J];免疫学杂志;2001年01期
7 罗支农,王新玉,韦怀新,刘刚纯,曹晓桦,陈春艾;能量多普勒增强造影在晚期产后胎盘滞留诊断中的应用[J];中国超声医学杂志;2001年03期
8 王静雯;血管内皮生长因子在妊高征胎盘中的表达研究[J];中国现代医学杂志;2001年09期
9 李潇;;科学家试图揭开胎盘之谜[J];国外医学情报;2001年07期
10 刘霞,李力,周元国,郭建新,熊仁平;妊娠高血压综合征患者胎盘血管内皮生长因子的表达及其意义[J];中华妇产科杂志;2002年01期
相关会议论文 前10条
1 李东红;姜锋;姚元庆;杨梦庚;郑维国;;妊高征胎盘组织差异表达基因的筛选与确定[A];第八次全国妇产科学学术会议论文汇编[C];2004年
2 尚丽新;王晶;;妊娠期高血压疾病患者血清及胎盘组织中胰岛素样生长因子-1水平变化的研究[A];中华医学会第五次全国围产医学学术会议论文汇编[C];2005年
3 艾瑛;刘淑芸;;转化生长因子-β及其受体在妊娠期肝内胆汁淤积症患者胎盘中的表达[A];中华医学会第五次全国围产医学学术会议论文汇编[C];2005年
4 钟文筠;周君桂;庞战军;;妊娠高血压综合征胎盘组织中细胞因子基因的表达[A];第六届全国优生科学大会论文汇编[C];2006年
5 陈镇燕;李静;黄光英;;胎盘血管与胎儿长受限[A];中国微循环学会2011年全国学术会议论文汇编[C];2011年
6 张曦;侯磊;崔世红;张彩霞;刘爱清;;胎盘组织中肝细胞生长因子及其受体的表达[A];第八次全国妇产科学学术会议论文汇编[C];2004年
7 张曦;侯磊;崔世红;张彩霞;刘爱清;;妊娠高血压综合征患者胎盘组织中肝细胞生长因子及其受体的表达[A];第八次全国妇产科学学术会议论文汇编[C];2004年
8 赵晋英;侯玉英;饶华祥;杨瑞;刘智深;张淑萍;侯丽萍;徐秀文;祝寿芬;;弓形虫感染对孕鼠胎盘组织凋亡的影响[A];中华医学会热带病与寄生虫学分会机会性感染学术研讨会论文汇编[C];2007年
9 张爱臣;孙小淳;;妊娠期高血压疾病患者胎盘中血小板源性生长因子和血管细胞粘附分子的表达及其临床意义[A];东北三省第四届妇产科学术会议论文汇编[C];2008年
10 张桂瑜;杨守和;;巨大胎盘伴胎盘出血坏死1例[A];2003年全国医学影像技术学术会议论文汇编[C];2003年
相关重要报纸文章 前4条
1 王丽萍 高泓娟;食用胎盘是否安全[N];市场报;2000年
2 主治医师 江妹;吃胎盘大补吗?[N];保健时报;2006年
3 郑惠方;流产过多易致产后大出血[N];大众卫生报;2003年
4 黄利慧;流产过多易致产后大出血[N];大众卫生报;2006年
相关博士学位论文 前10条
1 乌仁塔娜;高原适应遗传机制及藏族胎盘组织表达谱研究[D];青海大学;2015年
2 李东红;妊高征患者胎盘组织差异表达基因的筛选与确定[D];中国人民解放军第四军医大学;2003年
3 胡雅毅;妊娠期肝内胆汁淤积症患者胎盘上缺氧诱导因子的初步研究[D];四川大学;2005年
4 张婷;妊娠期肝内胆汁淤积症患者胎盘差异表达蛋白的筛选及功能研究[D];南京医科大学;2013年
5 刘彦霞;胎盘血管病变发病机理的研究[D];山东大学;2008年
6 蒋颖;宫内高糖环境对胎盘基因印记的影响及其遗传效应机制的研究[D];浙江大学;2013年
7 樊江峰;正常妊娠和分娩及药物流产牦牛胎盘组织的细胞凋亡及其调节机制研究[D];甘肃农业大学;2012年
8 彭冰;人类白细胞抗原G、E在人胎盘组织的表达及其与妊娠期肝内胆汁淤积症的关系[D];四川大学;2005年
9 王晓东;促肾上腺皮质激素释放激素及其受体CRH-R1在妊娠肝内胆汁淤积症胎盘组织的表达研究[D];四川大学;2004年
10 王清德;妊娠高血压综合征发病机制的探讨[D];中国协和医科大学;1995年
相关硕士学位论文 前10条
1 胡海军;妊娠期肝内胆汁淤积症患者胎盘组织中HSP70、HIF-1α的表达及意义[D];川北医学院;2015年
2 宋玉杰;NGAL在子痫前期患者血液、尿液及胎盘组织中的表达及临床意义[D];河北医科大学;2015年
3 莫峥;胎盘细胞的分离培养及其与母血、脐血细胞嵌合情况的研究[D];中国人民解放军军事医学科学院;2015年
4 石小芳;AQP11在羊水量异常产妇胎盘和胎膜中的表达变化及意义[D];兰州大学;2015年
5 栗虹;妊娠合并甲状腺功能减退大鼠胎盘、甲状腺组织中TNF-α、IL-10的表达及其与妊娠期高血压疾病的关系[D];山西医科大学;2015年
6 朱晓丹;IL-37在重度子痫前期患者胎盘组织中的表达[D];山东大学;2015年
7 杨瑞芳;促肾上腺皮质激素释放激素对胎盘甾体激素合成调节及其机制的研究[D];第二军医大学;2004年
8 侯秀红;跨膜型血管内皮生长因子受体1在妊娠高血压综合征胎盘组织中的表达及其意义[D];第四军医大学;2005年
9 孙晓玲;脂联素及其受体在妊娠期糖尿病胎盘部位表达的研究[D];山西医科大学;2008年
10 张春霞;肿瘤坏死因子-α及转化生长因子-β1在妊娠期高血压疾病患者胎盘组织中的表达及意义[D];青岛大学;2006年
,本文编号:2197118
本文链接:https://www.wllwen.com/huliyixuelunwen/2197118.html