核酸纯化扩增及检测一体化数字PCR集成流路芯片的研制与应用
[Abstract]:In recent years, the digital PCR method on the micro-fluidic chip has been developed. The high sensitivity, accuracy and absolute quantitative properties of the digital PCR technology also give rise to the strong interest of people. The digital PCR technology is complementary to the micro-fluidic chip, and is mutually promoted, such as an integrated flow path digital PCR chip, a sliding chip, a million pixel digital PCR chip and a plurality of liquid drop digital PCR chips. However, these existing digital PCR chips, or with more lines or with complex external equipment, are laborious and time-consuming. Moreover, the existing several commercial digital PCR instruments are expensive and rely on the import completely, limiting the popularization of the digital PCR technology in the field of life science research in China. In addition, the integration of the micro-fluidic chip is a major development trend, and the functional elements such as sample processing, enrichment, separation and purification, reaction and the like are integrated into a single chip in a certain way, so that the micro-fluidic chip can cooperate with each other, and the real sample-in/ answer-out can be realized. Based on the summary of the principle, development and application of the digital PCR technology, this paper, combined with the actual situation of the laboratory, has obtained the following innovative results:1), using the air permeability of PDMS and combining the filter principle of the filter, We designed and developed a film digital PCR chip based on PDMS air permeability. The chip includes a mufilter structure like a filter structure and a thin film chip like a filter membrane. Wherein, the filter structure is composed of two parts, a sample injection hole and an air extraction hole are arranged on the filter structure, one end of the filter structure can be pumped, and one end of the sample is injected. The membrane chip is clamped in the middle of the. filter with a filter membrane with 650 circular cells with a diameter of 0.2 mm and a depth of 0.23 mm. When the syringe connected to the. mufilter is pumped, a negative pressure below atmospheric pressure appears on one side of the film wafer, and the air trapped by the sample is slowly introduced into the syringe through the PDMS film, and finally the liquid reagent is brought into each chamber and is filled. The membrane chip filled with the sample can carry out the digital PCR reaction on the PCR instrument.2) The air permeability of the PDMS is convenient for injection, but also the evaporation of the water is caused in the reaction thermal cycle of the PCR, and the reaction is influenced. We do not carry out special treatment, but add a large area of water-supplementing layer outside the film chip, which can inhibit the damage caused by evaporation.3) We integrate the nucleic acid extracting element and the digital PCR element through the method of separating the step-like sample. firstly, the required reagent segments of the nucleic acid extraction are stored in a Teflon tube; when we pump the syringe at one end of the nucleic acid extraction element, the reagent of the Teflon tube passes through the nucleic acid extraction region in sequence, the magnetic beads in the sample cracking liquid are absorbed by the magnet of the nucleic acid extraction region, The washing reagent sequentially performs the cleaning on the magnetic beads through the nucleic acid extraction region, and the PCR reagent is used for eluting the purified nucleic acid from the magnetic beads. As a result of the negative pressure operation, the sample lysing liquid and the washing liquid in the nucleic acid extraction cannot enter the PCR reaction zone to prevent the occurrence of the pollution. And a large area of the air extraction layer is arranged beside the digital PCR chamber of the micro-fluidic chip to realize the negative pressure injection. When the syringe connected to the suction layer is withdrawn, a negative pressure is present inside the suction layer, and the gas in the wafer chamber is introduced into the suction layer through the PDMS, and the reagent is brought into and filled with each cell. At the same time, after the air extraction layer is finished, the air is filled with water to act as an anti-evaporation function. At the same time, the nucleic acid extracting element is integrated on the digital PCR chip, and the nucleic acid extraction and the digital PCR reaction on a single chip are realized. To sum up, based on the air permeability of PDMS, we have developed a micro-fluidic chip which can realize the sample injection by using the negative pressure provided by the syringe, and can complete the digital PCR reaction. Compared with the prior digital PCR platform, the digital PCR system is more convenient, easy to operate and good in practicability. The integration of the nucleic acid extraction element and the digital PCR reaction element on the microfluidic chip is also realized by a step-by-step method, and the extraction of the beef DNA and the detection of the digital PCR are successfully carried out. The method is characterized in that the operation is convenient and rapid, the reagent consumption is small, the accuracy is good, and the method is suitable for common laboratory use. And the chip can also be used in the aspects of RNA extraction and cell capture based on the magnetic bead method, and provides a new method and an instrument for the more important problems in the field of life science such as tumor diagnosis, single cell detection, rare cell capture and detection.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:R440
【相似文献】
相关期刊论文 前10条
1 刘建英,冯明丽;活动性结核标志物与PCR对照检测诊断肺结核的临床应用探讨[J];实用医学杂志;2000年06期
2 刘连地;PCR对非细菌性前列腺炎的检测研究[J];中国乡村医生;2000年07期
3 朱新贤,李怀芳,叶元康,丁元生;PCR-寡核苷酸微流芯片用于人乳头状瘤病毒分型检测[J];生殖与避孕;2002年02期
4 许龙岩;袁慕云;唐勤;阳静;相大鹏;;PCR-焦磷酸测序检测单核细胞增生李斯特氏菌研究[J];中国食品卫生杂志;2013年03期
5 龚丽浩;PCR对致病性小肠结肠炎耶尔森氏菌的检测[J];国外医学.临床生物化学与检验学分册;1993年06期
6 陈锡慰;PCR对卡氏肺孢子虫肺炎早期诊断的实用性研究[J];国外医学(寄生虫病分册);1995年06期
7 顾丽娟;;PCR在诊断慢性非细菌性前列腺炎中的应用价值[J];现代中西医结合杂志;2008年30期
8 谭景尹;韦世录;李翠萍;何晓;胡水秀;何敏;郑艳燕;周昌明;;PCR-膜芯片检测石蜡包埋组织中结核杆菌耐药基因突变[J];临床与实验病理学杂志;2012年08期
9 谢振华;史小军;蔡国平;;在单个PCR管内快捷完成定点突变[J];中国生物化学与分子生物学报;2006年08期
10 谭景尹;胡水秀;韦世录;李翠萍;何晓;何敏;黄惠妮;郑艳燕;周昌明;;PCR-膜芯片检测痰结核杆菌耐药基因突变的应用研究[J];中国实验诊断学;2013年07期
相关会议论文 前10条
1 何小源;周广和;成卓敏;王立阳;陈剑波;;用聚合酶链式反应(PCR)检测马铃薯纺锤块茎类病毒[A];“植物病虫害生物学研究进展”——植物病虫害生物学国家重点实验室研究论文选[C];1995年
2 石琴;逯忠新;贺英;赵萍;储岳峰;高鹏程;;猪传染性胸膜肺炎放线杆菌PCR鉴定及人工感染血清的制备[A];中国免疫学会第五届全国代表大会暨学术会议论文摘要[C];2006年
3 王鑫;崔治中;徐步;龚建森;高明艳;范建华;俞燕;;PCR结合斑点杂交技术在检测自然发病鸡群中鸡传染性贫血病毒中的应用[A];中国畜牧兽医学会家禽学分会第九次代表会议暨第十六次全国家禽学术讨论会论文集[C];2013年
4 邬向东;何后军;肖根辉;邓舜州;张文波;戴益民;朱芝秀;;猪传染性胸膜肺炎的PCR快速诊断及流行病学分析[A];中国畜牧兽医学会家畜传染病学分会第七届全国会员代表大会暨第十三次学术研讨会论文集(下册)[C];2009年
5 吴雪琼;梁建琴;曹立雪;李洪敏;张俊仙;;应用PCR-寡核苷酸探针快速检测结核分支杆菌耐药基因突变[A];中国防痨杂志2003第25卷增刊——2003年中国防痨协会全国学术会议论文集[C];2003年
6 夏炉明;史一博;严亚贤;李树清;胡永强;陈志飞;易建平;李健;;复合PCR进行胸膜肺炎放线杆菌血清型分型[A];第六届全国会员代表大学暨第11次学术研讨会论文集(上)[C];2005年
7 夏炉明;史一博;严亚贤;李树清;胡永强;陈志飞;易建平;李健;;复合PCR进行胸膜肺炎放线杆菌血清型分型[A];中国畜牧兽医学会家畜传染病学分会第六届全国会员代表大会暨第11次学术研讨会论文集[C];2005年
8 季芳;郝香芬;张艳春;李学家;张秀娟;夏机良;刘晓明;彭白露;;人和猴通用的糖尿病PCR芯片的制备及其应用[A];第九届中国实验动物科学年会(2010新疆)论文集[C];2010年
9 徐福洲;杨兵;陈小玲;;PCR和斑点杂交检测实验感染雏鸡鸡传染性贫血病毒的动态分布[A];中国畜牧兽医学会禽病学分会第十一次学术研讨会论文集[C];2002年
10 眭元庚;张炜;徐正铨;;聚合酶链反应(PCR)技术在性病诊断中的应用[A];江苏省第二次性学研讨会论文集[C];1998年
相关重要报纸文章 前1条
1 张克;美启用“非典”病毒PCR试剂[N];中国医药报;2003年
相关博士学位论文 前5条
1 秦雷;基于PCR的太阳能电池硅电极参数检测研究[D];哈尔滨工业大学;2015年
2 田庆常;核酸纯化扩增及检测一体化数字PCR集成流路芯片的研制与应用[D];浙江大学;2015年
3 李现明;无传感器PCR芯片阵列的测量与控制技术研究[D];山东大学;2007年
4 朱峰;应用基于PCR的改良消减杂交技术克隆凋亡相关基因[D];第四军医大学;1999年
5 赵湛;基于MEMS技术的PCR芯片的研究[D];中国科学院研究生院(电子学研究所);2003年
相关硕士学位论文 前10条
1 周天;PCR芯片的原理、方法和应用研究[D];中国科学院研究生院(上海微系统与信息技术研究所);2003年
2 刘华栋;鸡毒支原体的分离和巢氏PCR鉴定研究[D];西南大学;2009年
3 谭景尹;PCR—膜芯片~(?)技术检测结核杆菌耐药基因突变的应用研究[D];广西医科大学;2011年
4 汪燕玲;PCR及荧光定量PCR方法鉴别饲料中鹅源性成分的研究[D];甘肃农业大学;2009年
5 邓鸣;3-PCR并联机构减振平台的动态性能分析[D];江南大学;2013年
6 骆健;静态腔室PCR芯片的设计制造与实验研究[D];上海交通大学;2014年
7 廖明城;基于MEMS的PCR芯片系统设计研究[D];华中科技大学;2011年
8 张荣;基于新型微型PCR芯片的电化学检测方法研究[D];湖南大学;2011年
9 赵鹤翔;核内小分子对PCR增效作用的研究[D];哈尔滨工业大学;2011年
10 朱建楚;基于PCR标记的糜子遗传多样性分析[D];西北农林科技大学;2005年
,本文编号:2439407
本文链接:https://www.wllwen.com/huliyixuelunwen/2439407.html