当前位置:主页 > 医学论文 > 护理论文 >

一种改进CLAHE算法在医学试纸条图像增强中的应用

发布时间:2019-08-07 06:28
【摘要】:在图像对比度增强算法中,结合自适应直方图均衡化和对比度受限两项技术的对比度受限自适应直方图均衡化算法(CLAHE)是一种常用的低对比度图像增强算法。为了解决快速诊断试剂中的过敏原检测试纸条图像对比度低的问题,尝试给出一种改进的CLAHE图像增强新算法。新算法在传统的CLAHE算法的基础上,通过引入一个自适应参数T来自动调整图像每个子块的像素点重新分配的范围,从而达到增强图像细节的目的。通过对过敏原检测试纸条图像增强的实验对比分析,表明改进后的CLAHE算法可有效地改善该类医学试纸条图像的增强视觉效果,为后续医学试纸条的分割和识别奠定基础。与此同时,以图像均方根对比度为定量统计依据,与传统CLAHE算法的结果比较得出:改进的CLAHE算法明显提高图像均方根对比度,传统的CLAHE算法平均提高原图像均方根对比度1~2倍,而改进的CLAHE算法平均提高3~4倍,进一步验证新算法是一种对过敏原检测试纸条图像增强更为有效的方法。
[Abstract]:In the image contrast enhancement algorithm, the contrast constrained adaptive histogram equalization algorithm (CLAHE), which combines adaptive histogram equalization and contrast restriction, is a commonly used low contrast image enhancement algorithm. In order to solve the problem of low contrast of strip image in allergen test in rapid diagnostic reagent, an improved CLAHE image enhancement algorithm was proposed. On the basis of the traditional CLAHE algorithm, the new algorithm automatically adjusts the range of pixel redistribution of each sub-block of the image by introducing an adaptive parameter T, so as to enhance the details of the image. Through the experimental comparative analysis of strip image enhancement of allergen test strip, it is shown that the improved CLAHE algorithm can effectively improve the visual effect of this kind of medical test strip image, and lay a foundation for the segmentation and recognition of subsequent medical test strip. At the same time, based on the quantitative statistical basis of image root mean square contrast, compared with the results of traditional CLAHE algorithm, the improved CLAHE algorithm obviously improves the image root mean square contrast, the traditional CLAHE algorithm increases the root mean square contrast of the original image by 1 鈮,

本文编号:2523773

资料下载
论文发表

本文链接:https://www.wllwen.com/huliyixuelunwen/2523773.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户561ee***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com