改进布谷鸟算法在桁架结构优化中的应用
发布时间:2018-01-15 01:30
本文关键词:改进布谷鸟算法在桁架结构优化中的应用 出处:《河北工程大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 云模型 基本布谷鸟算法 改进布谷鸟算法 优化设计 桁架结构
【摘要】:结构优化设计是利用最优化技术,寻求约束条件制约下的最优解。对结构进行优化设计不仅可以降低结构的重量和成本,而且有助于改进结构的强度、刚度等结构性能。桁架结构具有材料利用率高、质量相对较轻、承载能力很强、施工方便、装配性好、可被反复利用等优点,已被广泛应用于实际工程结构中。桁架结构优化设计具有重要意义。在实际工程应用中,人们遇到的问题越来越复杂,此时,利用传统的优化方法很难操作。因此,智能优化算法为求解优化问题提供了一种新的解决途径。智能算法中,元启发式算法是其重要的组成部分,此类启发式算法是受一些自然现象的启发而得到的。布谷鸟算法是由Xin-she Yang和Deb基于布谷鸟的寻窝产卵行为而探索出的一种新的元启发式算法,该算法具有参数设置少,寻优能力强,选择路径优等优点。现已广泛应用在多目标优化、神经网络训练、工程优化等领域。但是,因为布谷鸟算法被提出不久,仍存在着诸多不足,比如计算精度不高、收敛速度慢等缺点。鉴于此,本文将对布谷鸟算法展开较为深入的研究,针对基本算法的缺陷,进行分析改进,并将其应用于桁架结构的优化设计中。针对基本布谷鸟算法存在的缺点,本文利用云模型对基本布谷鸟算法进行了改进,并对改进布谷鸟算法的详细流程进行了设计。然后,将改进算法应用于桁架结构优化中,实现了对桁架结构的截面尺寸优化。通过对典型的平面和空间桁架结构的分析和与其他算法比较的结果表明,本文的改进算法具有有效性和可行性。本文提出改进的布谷鸟算法,并成功将其运用到桁架结构截面尺寸优化中,在一定程度上降低了工程造价,同时提高了优化效率。本文的工作为桁架结构优化提供了一种新的思路和方法,有一定的参考价值。
[Abstract]:Structural optimization design is the use of optimization technology, seeking the optimal solution under the constraint condition. To optimize the structure design can not only reduce the structural weight and cost, but also helps to improve the structural strength, stiffness and structural performance. Truss structures with high material utilization rate, the quality is relatively light, strong bearing capacity. The construction is convenient, the assembly is good, the advantages of repeated use, has been widely applied in practical engineering structure. The truss structure optimization design is of great significance. In practical application, the problem encountered by people more and more complex, at this point, it is difficult to operate using traditional optimization methods. Therefore, intelligence provides a a new approach to solve the optimization problem. The intelligent algorithm optimization algorithm, heuristic algorithm is the important part of this heuristic algorithm is inspired by some natural phenomena and the cloth. Cuckoo algorithm is a new meta heuristic algorithm proposed by Xin-she, Yang and Deb find the cuckoo's nest eggs behavior based on exploring, the algorithm has few parameters, optimization capability, path selection of excellent. Has been widely used in multi-objective optimization, neural network training, optimization and other areas but. Because, the cuckoo algorithm was proposed soon, there are still many problems, such as the accuracy of calculation, slow convergence speed and other shortcomings. In view of this, this paper will conduct an in-depth study on the cuckoo algorithm, aiming at the limitation of the basic algorithm for analysis and improvement, and its application in optimization design of truss structures on Basic cuckoo algorithm, based on the basic cuckoo algorithm was improved by using the cloud model, and the detailed process of improved cuckoo search algorithm was designed. Then, the improved algorithm is applied to the truss Structure optimization, realize the optimization of sectional dimensions on the truss structure. Through the analysis of plane and space truss structure is typical and compare with other algorithms. The results show that the improved algorithm is effective and feasible. In this paper, the cuckoo algorithm, and successfully applied it to the section size optimization of truss structure to a certain extent, reduce the cost and improve the efficiency of optimization. This paper provides a new idea and method for truss structure optimization, has a certain reference value.
【学位授予单位】:河北工程大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU323.4
【参考文献】
相关期刊论文 前10条
1 徐浩杰;刘济科;吕中荣;;改进的布谷鸟算法在结构损伤识别中的应用[J];应用力学学报;2016年03期
2 董崇杰;刘毅;彭勇;;改进布谷鸟算法在人群疏散多目标优化中的应用[J];系统仿真学报;2016年05期
3 周欢;李煜;;具有动态惯性权重的布谷鸟搜索算法[J];智能系统学报;2015年04期
4 朱大林;张灯皇;郑晓东;王进学;;基于多目标元胞遗传算法的桁架结构优化设计[J];组合机床与自动化加工技术;2015年03期
5 明波;黄强;王义民;刘登峰;白涛;;基于改进布谷鸟算法的梯级水库优化调度研究[J];水利学报;2015年03期
6 郑巧燕;莫愿斌;刘付永;马彦追;;一种小规模多种群布谷鸟算法[J];计算机应用与软件;2014年10期
7 张永椺;汪镭;吴启迪;;动态适应布谷鸟搜索算法[J];控制与决策;2014年04期
8 王李进;尹义龙;钟一文;;逐维改进的布谷鸟搜索算法[J];软件学报;2013年11期
9 陈乐;龙文;;求解工程结构优化问题的改进布谷鸟搜索算法[J];计算机应用研究;2014年03期
10 胡欣欣;;求解函数优化问题的改进布谷鸟搜索算法[J];计算机工程与设计;2013年10期
,本文编号:1426209
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1426209.html