基于子模型的蜂窝梁孔间腹板受剪屈曲承载力计算方法
本文关键词: 蜂窝梁 孔间腹板 剪切屈曲 剪切屈曲系数 设计计算公式 出处:《山东大学》2017年硕士论文 论文类型:学位论文
【摘要】:蜂窝梁由H型或I型钢梁在腹板沿一定曲折线进行切割并错位拼接、焊接而成。根据切割方式的不同,可以制作出六边形、八边形、圆形和其他异型孔蜂窝梁。相比原型实腹钢梁,蜂窝梁在不增加用钢量的情况下具有更高的刚度,同时腹板孔洞的存在可以让建筑设备从蜂窝梁中穿过,有效降低建筑层高。由于腹板孔洞的存在,蜂窝梁会发生孔间腹板屈曲等新的破坏形式,本文提出了六边形孔蜂窝梁在弹性阶段和弹塑性阶段的剪切屈曲系数的实用计算公式,简化了蜂窝梁孔间腹板剪切屈曲承载力的计算。本文通过有限元分析方法研究竖向荷载下六边形孔蜂窝梁的孔间腹板屈曲性能。将蜂窝梁上T形腹板作为楔形隔离体对待,将蜂窝梁孔间腹板屈曲问题简化为板件受水平剪力作用失稳的问题。借用薄板剪切屈曲承载力计算公式,按照蜂窝梁孔间腹板的尺寸特点对公式进行修正,得到六边形孔蜂窝梁孔间腹板剪切屈曲承载力计算公式。将楔形隔离体作为有限元子模型代替整体模型进行分析,通过对子模型边界条件的调整使得子模型在受力性能上能够与整体模型吻合。通过对孔间腹板宽度与腹板厚之比e/tw,孔高与腹板厚之比h0/tw,孔洞上方T形腹板高度与腹板厚之比hf/tw,腹板厚tw以及六边形孔洞的边倾角α等五个参数的分析,探究了其对剪切屈曲承载力和剪切屈曲系数的影响。在大量参数分析的前提下,分别拟合出了弹性阶段以及弹塑性阶段的剪切屈曲系数的计算公式,进而得到了六边形孔蜂窝梁竖向孔间腹板屈曲承载力的计算公式。弹性阶段承载力的计算公式与有限元结果吻合较好,由于实验试件大多发生弹塑性屈曲破坏,因此弹性阶段公式计算值相对实验结果较高,引入安全系数后公式计算值精度提高。弹塑性阶段的屈曲承载力计算公式与有限元分析结果和实验结果吻合较好,将弹塑性阶段承载力的计算公式与欧洲规范值对比,揭示了欧洲规范使用"斜压柱"模型计算蜂窝梁孔间腹板屈曲承载力的局限性。
[Abstract]:The beehive beam is made of H-shaped or I-shaped steel beams cut along certain twists and turns on the web and welded. According to the different cutting methods, hexagonal and octagonal shapes can be made. Circular and other special-shaped beehive beams. Beehive beams have higher stiffness without increasing the amount of steel used, compared to prototype full-web steel beams, and web holes exist that allow construction equipment to pass through the beehive beams. Due to the existence of web holes, new failure forms such as web buckling between holes will occur in honeycomb beams. In this paper, a practical formula for calculating shear buckling coefficients of hexagonal honeycomb beams in elastic and elastic-plastic stages is presented. The calculation of shear buckling capacity of web between honeycomb beams is simplified. In this paper, the buckling behavior of interhole web of hexagonal honeycomb beams under vertical load is studied by finite element method. The T-shaped webs on honeycomb beams are treated as wedge-shaped isolators. In this paper, the problem of web buckling between honeycomb beams is simplified as the instability of plates subjected to horizontal shear force. The formula is modified according to the size characteristics of web between honeycomb beams by using the formula of shear buckling capacity of thin plate. A formula for calculating the shear buckling capacity of web between honeycomb beams with hexagonal holes is obtained. The wedge isolator is used as the finite element submodel instead of the integral model to be analyzed. By adjusting the boundary conditions of the sub-model, the sub-model can fit the overall model in terms of mechanical performance. By comparing the ratio of the width of the web between holes to the thickness of the web, the ratio of the height of the hole to the thickness of the web, the ratio of the height of the hole to the thickness of the web, the height of the T-shaped web above the hole and the thickness of the web are compared. The analysis of five parameters, such as the ratio of web thickness to thickness, the thickness of web, tw, and the edge dip angle of hexagonal hole, In this paper, the influence of shear buckling capacity and shear buckling coefficient on shear buckling capacity and shear buckling coefficient is investigated. On the premise of analyzing a large number of parameters, the formulas for calculating shear buckling coefficient in elastic stage and elastic-plastic stage are fitted, respectively. Furthermore, a formula for calculating the buckling capacity of the web between vertical holes of hexagonal honeycomb beams is obtained. The calculation formula for the bearing capacity in the elastic stage is in good agreement with the finite element results, because the elastoplastic buckling failure occurs in most of the experimental specimens. Therefore, the calculated value of the elastic stage formula is higher than that of the experimental one, and the precision of the formula is improved by introducing the safety factor. The calculation formula of the buckling capacity in the elastic-plastic stage is in good agreement with the results of the finite element analysis and the experimental results. By comparing the calculation formula of elastic-plastic stage bearing capacity with the European Code, the limitations of the European Code for calculating the buckling capacity of web between honeycomb beams are revealed by using the "baroclinic column" model.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU391
【相似文献】
相关期刊论文 前10条
1 尹芳;;基于ANSYS Workbench的结构应力分析的子模型法[J];武汉轻工大学学报;2014年02期
2 张轶川;苗强;朱西产;王大志;刘军勇;;行人头部碰撞子模型适用性的研究[J];汽车工程;2010年03期
3 王燕;;子模型方法在活门有限元分析中的应用[J];大电机技术;2010年05期
4 周宇;万朝燕;谢素明;;基于子模型的铁路车辆结构强度精细计算[J];铁道机车车辆;2009年01期
5 刘正跃;;有限元分析中的子模型法[J];内江科技;2012年03期
6 徐珊珊;刘世明;郭绍静;张阿漫;;子模型方法在舰船设备连接结构强度研究中的应用(英文)[J];Journal of Marine Science and Application;2009年04期
7 胡昌良;李龙超;李波;;基于子模型方法的曲轴强度分析[J];汽车工程师;2011年05期
8 孙泽世;王锋;;ANSYS子模型技术在桥梁分析上的应用[J];山西建筑;2007年20期
9 徐伽南;何勇;崔磊;金伟良;;基于改进子模型技术的TLP平台疲劳分析[J];船舶工程;2012年01期
10 高耀东,杨建鸣,汪建新;ANSYS子模型技术的应用[J];包头钢铁学院学报;2002年04期
相关会议论文 前1条
1 杨庆山;李启;;亚格子模型在钝体绕流大涡模拟中的比较[A];第十四届全国结构风工程学术会议论文集(下册)[C];2009年
相关博士学位论文 前1条
1 李应林;基于旋流强度的亚格子模型及其在不可压流动大涡模拟中的应用[D];中国科学技术大学;2015年
相关硕士学位论文 前2条
1 郭康瑞;基于子模型的蜂窝梁孔间腹板受剪屈曲承载力计算方法[D];山东大学;2017年
2 周宇;基于子模型的铁路车辆结构强度精细计算[D];大连交通大学;2008年
,本文编号:1525646
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1525646.html