太阳能耦合空气源热泵一体化生活热水系统的性能研究
本文关键词: 太阳能/空气能蒸发集热器 空气源热泵 太阳能 COP 节能 TRNSYS 出处:《太原理工大学》2017年硕士论文 论文类型:学位论文
【摘要】:随着世界经济快速发展,能源紧缺和环境恶化已成为全球性问题,各领域越来越重视对可再生能源的开发利用。制备生活热水的能耗是我国居住建筑能源消耗的重要组成部分,随着生活水平提高,这部分能耗还会继续增长。直接膨胀式太阳能热泵热水系统的集热器蒸发器部件与空气自然对流换热,对流换热系数较低,所需换热面积非常大;现有太阳能辅助空气源热泵热水系统是在空气源热泵热水系统(ASHP DHW系统)和太阳能热水系统(SDHW系统)两套系统基础上组合而来,布置面积过大、布置欠灵活。为解决上述问题,本文提出太阳能/空气能蒸发集热器部件可同时吸收太阳能与空气能,且该部件与空气强制对流换热,对流换热系数高,所需换热面积小;通过该部件构建了太阳能/空气能热泵(SASIHP),进而组成太阳能耦合空气源热泵一体化热水系统(SASIHP DHW系统)。SASIHP DHW系统占地面积小、外露管线少,且兼顾了ASHP DHW和SDHW两个系统的性能优势,这对降低热水能耗,促进建筑节能具有重要实用价值和意义。为验证SASIHP DHW系统的性能优劣,以太原地区居住建筑生活热水用户为研究对象,利用TRNSYS软件搭建SASIHP DHW系统和ASHP DHW系统,SDHW系统的仿真平台,分析对比SASIHP DHW系统和其他热水系统的系统COP、耗电量变化情况,对比其节能性。模拟结果表明:SASIHP DHW系统年度耗电量为646.09 kWh,较SDHW系统的2204.49 kWh减少70.7%,较ASHP DHW系统的711.07 kWh减少9.14%。SASIHP DHW系统ACOP(年均COP)为4.12,较ASHP DHW系统的3.69提高11.7%。在最有利工况7月22日,SASIHP的DCOP(日均COP)为6.02,较ASHP的4.9高出22.9%;耗电量为1.16kWh,较ASHP的1.42kWh降低18.31%。在最不利工况1月6日,SASIHP的DCOP为2.73,较ASHP的2.67高出2.25%;耗电量为2.55kWh,较ASHP的2.62k Wh降低2.67%。SASIHP系统性能较好,节能优势明显。搭建SASIHP DHW系统、ASHP DHW系统和电热水系统的实验装置,测试它们在太原地区各季节典型气象条件下的运行性能,并验证模拟结果的正确性。实验结果表明:SASIHP DHW系统的耗电量较其他两种系统低。夏季典型日SASIHP DHW系统COPH都较高,均在5.5以上,相对ASHP DHW系统COPH提高百分比均在20%以上。过渡季节典型日SASIHP DHW系统COPH虽不是特别高,但都在4.09以上,相对ASHP DHW系统COPH提高百分比均在12%以上。冬季典型日除1月6日低温高湿易结霜工况SASIHP DHW系统COPH为2.72,相对ASHP DHW系统COPH提高百分比为2.25%外,其他测试日SASIHP DHW系统COPH都在2.9左右,COPH提高百分比均在7%以上。实验值与仿真模拟值误差均在±10%以内,因此仿真模拟基本满足要求,所建立的数学模型也是正确的。
[Abstract]:With the rapid development of world economy, energy shortage and environmental deterioration have become a global problem. More and more attention has been paid to the development and utilization of renewable energy in various fields. The energy consumption of preparing domestic hot water is an important part of energy consumption in residential buildings in China. With the improvement of living standard, this part of energy consumption will continue to increase. The collector evaporator parts of direct expansion solar heat pump hot water system naturally convection heat transfer with air, the convection heat transfer coefficient is lower, and the heat transfer area is very large. The existing solar assisted air source heat pump hot water system is based on the air source heat pump system (ASHP DHW system) and the solar water heating system (DHW system). The layout area is too large and the arrangement is not flexible. In order to solve the above problems, In this paper, it is suggested that the solar energy / air energy evaporative collector unit can absorb solar energy and air energy simultaneously, and the forced convection heat transfer between this part and air has high convection heat transfer coefficient and small heat transfer area. Through this component, a solar / air energy heat pump is constructed, and then a solar coupled air-source heat pump integrated hot water system is constructed. The SASIHP DHW system / SASIHP DHW system occupies a small area and has few exposed pipelines. It also takes into account the performance advantages of the two systems, ASHP DHW and SDHW. It is of great practical value and significance to reduce the energy consumption of hot water and promote energy saving in buildings. In order to verify the performance of SASIHP DHW system, the users of domestic hot water in residential buildings in Taiyuan area are taken as the research object. The simulation platform of SASIHP DHW system and ASHP DHW system is built by using TRNSYS software, and the power consumption of SASIHP DHW system and other hot water system is analyzed and compared. The simulation results show that the annual power consumption of the system is 646.09 kWhs, 70.7 less than the 2204.49 kWh of the SDHW system, 9.14% lower than the 711.07 kWh of the ASHP DHW system, 4.12% of the ACOP of the DHW system of the ASHP DHW system, and 11.77% higher than the 3.69% of the ASHP DHW system. In July 22nd, the DCOP (daily average COP) of SASIHP was 6.02, which was 22.9 higher than that of ASHP, and the power consumption was 1.16kWh, which was 18.31% lower than that of ASHP (1.42kWh). On January 6th, the DCOP of SASIHP was 2.73, which was 2.25 higher than that of ASHP, and the power consumption was 2.55kWh. the system performance of SASIHP was better than that of ASHP's 2.62kWh. The advantages of energy saving are obvious. The experimental devices of SASIHP DHW system and electric hot water system are set up to test their operation performance under typical meteorological conditions in different seasons in Taiyuan area. The experimental results show that the power consumption of the DHW system is lower than that of the other two systems. The COPH of the typical SASIHP DHW system in summer is higher than that of the other two systems. Compared with ASHP DHW system, the percentage increase of COPH in SASIHP DHW system is above 20%. The COPH of SASIHP DHW system is not very high, but all of them are above 4.09 in transition season. Compared with ASHP DHW system, the percentage of COPH increased by more than 12%. In the typical days of winter, the COPH of SASIHP DHW system was 2.72 in January 6th, and that of COPH in ASHP DHW system was 2.25%, except that in January 6th, the COPH of SASIHP DHW system was 2.72 and that of ASHP DHW system was 2.25%. In other test days, the COPH of SASIHP DHW system is about 2. 9 and the percentage of COPH increase is above 7%. The error between the experimental value and the simulation value is less than 卤10%, so the simulation basically meets the requirements, and the mathematical model is also correct.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU822
【参考文献】
相关期刊论文 前10条
1 陈学锋;何钦波;徐言生;余华明;殷少有;;热泵辅助型太阳能热水系统动态性能评价研究[J];太阳能学报;2015年02期
2 高维庭;;“太阳能集热器+空气源热泵热水机”热水系统问题及对策[J];暖通空调;2013年S1期
3 丁鸿昌;杨前明;刘其会;吕帅;;基于多参数空气源热泵辅助太阳能热水机组的控制系统[J];可再生能源;2013年08期
4 郭超;王芳;罗谟娇;张振亚;汪杰;吴获;;太阳能、空气源热泵热水系统性能优化实验研究[J];制冷学报;2013年05期
5 卢郁;于洪文;丁海成;张艳丽;刘宗明;;平板太阳能集热器热性能数学建模及模拟[J];济南大学学报(自然科学版);2013年03期
6 张月红;徐国英;张小松;;太阳能与空气复合源热泵热水系统多模式运行实验特性[J];化工学报;2010年02期
7 罗会龙;铁燕;李明;钟浩;;空气源热泵辅助加热太阳能热水系统热性能研究[J];建筑科学;2009年02期
8 江乐新;楼静;黎恢山;蒋佳利;;并联式太阳能热泵热水系统最佳匹配研究[J];给水排水;2008年09期
9 侯军霞;顾敏;杨庆;高孟理;郑明权;任玉龙;;热泵辅助太阳能集中热水系统经济影响因素分析[J];兰州交通大学学报;2008年01期
10 王华军;魏晋;张文秀;赵军;;一种基于塔式结构的地源热泵系统设计方法[J];暖通空调;2006年11期
相关硕士学位论文 前3条
1 许鹏鹏;广州地区太阳能/空气源热泵热水系统性能研究[D];广州大学;2014年
2 刘丽军;太阳能辅助空气源热泵在生活热水工程中的应用研究[D];哈尔滨工程大学;2013年
3 刘雨曦;空气源热泵辅助太阳能热水系统在夏热冬冷地区的运行模拟和应用研究[D];重庆大学;2011年
,本文编号:1540822
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1540822.html