当前位置:主页 > 科技论文 > 建筑工程论文 >

基于复合热源的热泵节能改造研究

发布时间:2018-03-11 01:11

  本文选题:TRNSYS 切入点:喷淋式无霜空气源热泵 出处:《北方工业大学》2017年硕士论文 论文类型:学位论文


【摘要】:本文以连云港市某能源中心建筑物为研究对象,首先对该能源中心空气源热泵的性能进行测试,发现由于冬季蒸发器表面存在结霜问题,制热效果不好。然后分别对连云港当地气候条件对热泵结霜的影响、建筑物及其能耗概况、冷热电负荷与可用能源、现有可用设备进行分析,发现在冬季,该中心的空气源热泵机组能耗及维护费用均偏高。基于对热泵存在的问题与中心可用能源设备研究,本文对现行的空气源热泵逐步提出了三个改造方案,并通过TRNSYS软件进行了热泵全年运行情况的性能与能耗模拟。方案一为解决热泵冬季结霜问题,通过在空气源热泵翅片管换热器上增加喷淋装置,并以建筑附近湖水为水源,在冬季结霜工况对翅片管换热器进行连续喷淋,以达到防霜除霜的目的。针对湖水腐蚀性提出了三种可延缓湖水对翅片腐蚀的方法,并结合空气源热泵实际情况逐一进行分析。结果表明,生成络合物膜的缓蚀剂法8或牺牲镁阳极的阴极保护法较适用于解决本方案存在的问题。该方案的TRNSYS供暖季无霜状态模拟结果表明,热泵全年能耗为806330kW·h,全年平均COP可达3.22。方案二为了进一步降低热泵能耗,并充分利用建筑物附近的湖水能,通过为现行的空气源热泵并联一个辅助蒸发器将其改造为水源热泵,并以建筑附近湖水为水源。该方案的TRNSYS模拟表明由于供暖季前期湖水平均水温较低,在供暖前期湖水源热泵能耗高于无霜空气源热泵,但夏季能耗较低。热泵全年能耗为713761kW·h,全年平均COP可达3.58。方案三为解决供暖季前期湖水源热泵由于性能衰减造成的能耗偏高问题,利用能源中心可铺设太阳能集热器面积500m2的条件,增加太阳能热水系统辅助湖水源热泵供热,并设计了相应的运行模式。该方案的TRNSYS模拟结果表明,虽然铺设500m2太阳能集热器冬季所提供热量远低于湖水源热泵,但节能效果优异。太阳能辅助湖水源热泵供热后,热泵全年能耗为642500.3kW·h,全年平均COP 可达 3.69。最后,本文对于空气源热泵改造后在连云港全年运行的特点进行了分析,对于传统空气源热泵空调提出了较合理的改进意见。分析表明,三种改造方案都达到了节能的目的,以全年运行能耗为比较基准,方案三的太阳能辅助湖水源热泵最好,其次为方案二的湖水源热泵,方案一的无霜空气源热泵最差。本文的研究结果可为提高与连云港气候类似的地区的建筑空调节能水平提供参考性解决方案。
[Abstract]:In this paper, an energy center building in Lianyungang City is taken as the research object. Firstly, the performance of the energy center air-source heat pump is tested, and it is found that there is frost on the surface of the evaporator in winter. The influence of local climate conditions on heat pump frosting, the general situation of buildings and their energy consumption, the cold, thermal and electric load and available energy, the available equipments are analyzed, and it is found that in winter, The energy consumption and maintenance cost of the air source heat pump unit in the center are on the high side. Based on the problems existing in the heat pump and the research on the energy equipment available to the center, this paper puts forward three revamping schemes for the existing air source heat pump. The performance and energy consumption of the heat pump are simulated by TRNSYS software. Scheme one is to solve the problem of winter frosting of heat pump, by adding spray device to the finned tube heat exchanger of air source heat pump, and taking the lake water near the building as the water source. The finned tube heat exchanger was continuously sprayed in winter frosting condition to prevent frosting and defrosting. In view of the corrosion of lake water, three methods were put forward to delay the corrosion of fin by lake water. Combined with the actual situation of air-source heat pump, the results show that, The corrosion inhibitor method 8 or the cathodic protection method of sacrificial magnesium anode for the formation of complex membrane are more suitable to solve the problems existing in this scheme. The simulation results of frost-free state in TRNSYS heating season of this scheme show that, The annual energy consumption of the heat pump is 806330kW 路h, and the annual average COP can reach 3.22.The second scheme is to further reduce the energy consumption of the heat pump and make full use of the lake water energy near the building to transform it into a water source heat pump by connecting an auxiliary evaporator for the existing air source heat pump. The TRNSYS simulation shows that the energy consumption of the water source heat pump is higher than that of the frost-free air source heat pump in the early heating season because the average water temperature of the lake water is lower than that of the frost-free air source heat pump. But the energy consumption in summer is low. The annual energy consumption of heat pump is 713761 kW 路h and the average annual COP can reach 3.58.The third scheme is to solve the problem of high energy consumption caused by the performance attenuation of lake water source heat pump in the early heating season. Using the condition that the solar collector area can be laid in the energy center of 500m2, the solar water heating system is added to assist the heat supply of the lake water source heat pump, and the corresponding operation mode is designed. The TRNSYS simulation results of the scheme show that, Although the heat supply of 500m2 solar collector is much lower than that of lake water source heat pump in winter, the energy saving effect is excellent. After solar energy supply, the annual energy consumption of heat pump is 642500.3kW 路h, and the average annual COP is 3.69. finally, This paper analyzes the characteristics of air source heat pump operation in Lianyungang after revamping, and puts forward more reasonable suggestions for the improvement of traditional air source heat pump air conditioning. The analysis shows that the three retrofit schemes have achieved the purpose of saving energy. Based on the annual operating energy consumption, the solar-assisted lake water source heat pump is the best in the third scheme, followed by the lake water source heat pump in the second scheme. The results of this paper can provide a reference solution for improving the energy saving level of building air conditioning in areas similar to Lianyungang climate.
【学位授予单位】:北方工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU83

【参考文献】

相关期刊论文 前10条

1 杨少鹏;乔春珍;赵玉清;;减缓湖水对风冷热泵翅片管换热器腐蚀性的研究[J];全面腐蚀控制;2016年11期

2 吴宏伟;赵永;吴伟伟;;基于TRNSYS的某办公建筑负荷计算示例分析[J];山西建筑;2015年12期

3 衣健光;杨国荣;;建筑区域供能系统的冷热源选择[J];暖通空调;2013年09期

4 付慧影;姜益强;姚杨;高强;;喷淋溶液对无霜空气源热泵系统特性的影响[J];化工学报;2012年S2期

5 陈晓;林汉柱;林宣军;李明;;小型湖泊应用于地表水源热泵时的热承载能力分析[J];水利学报;2011年08期

6 于清章;吴霁虹;郭积铖;;高氯化聚乙烯防腐涂料在防腐领域中的应用[J];涂料工业;2010年08期

7 徐兆颖;;湖水源热泵的应用分析[J];中小企业管理与科技(上旬刊);2010年01期

8 朱忠伟;吴一平;葛红花;;变电站接地网腐蚀与防护研究进展[J];上海电力学院学报;2009年06期

9 马学虎;汪明哲;兰忠;王四芳;李晓楠;;表面纳米结构及其自由能对滴状冷凝传热的影响[J];工程热物理学报;2009年10期

10 申江;李园园;;低环温空气源热泵系统的试验研究[J];工程热物理学报;2008年06期

相关会议论文 前1条

1 何涛;;地表水水源热泵系统应用实例分析[A];全国暖通空调制冷2004年学术年会资料摘要集(2)[C];2004年

相关博士学位论文 前1条

1 刘寅;太阳能—空气复合热源热泵系统性能研究[D];西安建筑科技大学;2010年

相关硕士学位论文 前9条

1 刘祥哲;太阳能热泵采暖系统的理论分析与设计研究[D];华北电力大学;2013年

2 高强;无霜空气源热泵系统的实验研究[D];哈尔滨工业大学;2011年

3 蒙建东;小型水体最大供冷能力的计算分析[D];哈尔滨工业大学;2008年

4 胥晓e,

本文编号:1595905


资料下载
论文发表

本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1595905.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户403a5***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com