基于不同建筑结构形式的质量调谐阻尼器性能研究
发布时间:2018-03-28 23:34
本文选题:质量调谐阻尼器 切入点:SSI效应 出处:《广州大学》2017年硕士论文
【摘要】:质量调谐阻尼器(TMD)作为一种有效的被动控制手段,由于其构造简单、成本低廉、易于维护等优点而被广泛应用。TMD由质量块、弹簧元件和阻尼器组成。建筑结构按照其横向振动形式的不同,大致可分为三类:剪切型结构、弯剪型结构以及弯曲型结构。然而,传统TMD最优设计参数的研究大多数是针对剪切型结构展开。鉴于此,本文基于不同建筑结构形式对TMD最优设计参数开展了以下几项研究工作:1)介绍了传统TMD最优参数的求解思路,在此基础上,分析了剪切型结构与TMD之间存在的倾角对TMD控制效果的影响。以理论推导形式给出了 TMD最优参数的修正公式,并且给出了 TMD等效阻尼比的理论修正公式。通过算例分析验证了修正公式的有效性与正确性。2)给出了考虑土—结构动力相互作用(简称SSI效应)的TMD体系简化模型,结合SOA算法提出了一种适用于SSI体系的TMD设计方法。分析了 SSI效应对TMD控制效果的影响,发现SSI体系的自振周期较刚性地基假设会有一定程度的延长,且场地土越软,SSI体系自振周期延长越多。3)将弯剪型结构简化为一根Timoshenko悬臂梁模型,充分考虑结构弯曲变形产生的弯曲转角对TMD动力特性的影响。以结构位移响应均方差为控制目标,提出了基于随机权重粒子群算法对TMD进行优化设计的方法,该方法增加了对TMD质量比的优化。数值仿真结果表明,结构弯曲变形产生的弯曲转角会影响TMD的动力特性,从而影响TMD的控制效果。分析发现,存在一个转角系数限值,当转角系数大于该限值时,设计TMD时有必要考虑结构弯曲变形的影响。4)将弯曲型结构简化为一根欧拉悬臂梁,使用有限单元法求解结构特性矩阵,并给出了 TMD体系运动方程。使用Newmark-β法对运动方程进行求解,并基于首次穿越破坏机制对TMD体系进行了可靠度分析。基于模拟退火的粒子群算法对TMD进行最优参数求解。算例分析表明,TMD能有效控制弯曲型结构的风致振动,能有效提高结构可靠度。5)以框剪结构为例,基于结构性能目标提出一种TMD减震体系优化设计方法。将高层结构简化为考虑集中参数的连续悬臂梁模型,并使用Rayleigh-Ritz法分析了结构动力特性,以结构位移响应作为控制对象,以结构层间位移角限值作为约束条件,基于遗传算法对TMD进行数值优化设计。
[Abstract]:Mass tuned damper (TMD), as an effective passive control method, is widely used by mass block because of its advantages of simple construction, low cost and easy maintenance. Spring elements and dampers. Building structures can be broadly divided into three types according to their transverse vibration forms: shear structures, bending shear structures, and bending structures. Most of the research on the traditional TMD optimal design parameters is aimed at shear structure. In view of this, In this paper, based on the different building structure forms, the following research work on the optimal design parameters of TMD is carried out. (1) the idea of solving the traditional optimal parameters of TMD is introduced, and on this basis, The influence of the inclination between shear structure and TMD on the control effect of TMD is analyzed. The modified formula for the optimal parameters of TMD is given in the form of theoretical derivation. The theoretical correction formula of the equivalent damping ratio of TMD is given. The validity and correctness of the modified formula are verified by an example. (2) the simplified model of TMD system considering soil-structure dynamic interaction (SSI effect) is given. Based on the SOA algorithm, a design method of TMD for SSI system is proposed. The effect of SSI effect on the control effect of TMD is analyzed. It is found that the natural vibration period of SSI system will be prolonged to some extent than that of rigid foundation. Moreover, the softer the site soil is, the longer the natural vibration period is. 3) the bending shear structure is simplified as a Timoshenko cantilever beam model. The effect of bending angle caused by structural bending deformation on the dynamic characteristics of TMD is fully considered. Taking the mean variance of structural displacement response as the control object, a stochastic weighted particle swarm optimization method is proposed to optimize the design of TMD. The numerical simulation results show that the bending angle produced by the bending deformation of the structure will affect the dynamic characteristics of the TMD and thus the control effect of the TMD. It is found that there is a limit value of the rotation coefficient. When the angle coefficient is larger than the limit value, it is necessary to consider the influence of bending deformation on the design of TMD. (4) the bending structure is simplified as an Euler cantilever beam, and the finite element method is used to solve the structural characteristic matrix. The equation of motion of TMD system is given. The Newmark- 尾 method is used to solve the equation of motion. The reliability of TMD system is analyzed based on the first time traversing failure mechanism, and the optimal parameters of TMD are solved based on simulated annealing Particle Swarm Optimization (PSO) algorithm. The numerical results show that TMD can effectively control the wind-induced vibration of curved structures. Taking frame shear structure as an example, an optimal design method of TMD damping system based on structural performance objectives is proposed. The high-rise structure is simplified as a continuous cantilever beam model with concentrated parameters. The Rayleigh-Ritz method is used to analyze the dynamic characteristics of the structure. Taking the displacement response of the structure as the control object and the limit value of the displacement angle of the structure floor as the constraint condition, the numerical optimization design of the TMD is carried out based on genetic algorithm.
【学位授予单位】:广州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU352.1
【参考文献】
相关期刊论文 前10条
1 沈艳;张丽玲;张琦智;底大钧;;基于三阶和四阶龙格库塔法的GM(1,1)模型优化及应用[J];数学的实践与认识;2016年07期
2 谢礼立;曲哲;;论土木工程灾害及其防御[J];自然灾害学报;2016年01期
3 刘良坤;谭平;李祥秀;张颖;周福霖;;TMD控制系统的相位及控制效果分析[J];振动与冲击;2015年11期
4 王志诚;许春荣;吴宏波;;崇启大桥主桥钢箱梁TMD系统设计参数计算研究[J];土木工程学报;2015年05期
5 陈鑫;李爱群;王泳;张志强;;自立式高耸结构风振控制方法研究[J];振动与冲击;2015年07期
6 王磊;谭平;赵卿卿;;随机结构-TMD优化设计与概率密度演化研究[J];振动工程学报;2015年02期
7 雷旭;牛华伟;陈政清;汪志昊;周帅;;大跨度钢拱桥吊杆减振的新型电涡流TMD开发与应用[J];中国公路学报;2015年04期
8 张s,
本文编号:1678590
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1678590.html