公共建筑中呼吸墙体的节能技术研究
发布时间:2018-04-18 18:41
本文选题:呼吸墙体 + 空气层 ; 参考:《西安科技大学》2017年硕士论文
【摘要】:呼吸墙体因设置了中间空气层,能够有效的降低建筑能耗,同时具有保温隔热、降噪等优点。随着公共建筑能耗越来越大,具有节能优势的呼吸墙体应用日益增多。为得到呼吸墙体的能耗影响因素、传热规律及墙体合理厚度,本文对呼吸墙体的节能技术加以研究,其研究结论具有重要的理论意义及工程应用价值。本文以呼吸墙体为研究对象,通过实地调查,分析得出了呼吸墙体的材料及厚度是其能耗的主要影响因素。为了掌握呼吸墙体的节能效果,本文以实际工程为例,对呼吸墙体的热工指标进行计算并对比相同构造的普通墙体,得出其节能效率比普通墙体提高了18%。为了减少呼吸墙体的厚度及自重,提高结构安全性,对墙体的材料及厚度进行了优化,对比得出优化后呼吸墙体传热系数减小20.38%,热惰性指标增大20.67%。同时运用Fluent软件模拟计算得出:呼吸墙体内、外侧及空气层温度分别降低1.9℃、2.2℃和0.2℃。证明优化后呼吸墙体具有更好的节能性。为研究呼吸墙体的传热规律与变化特点,课题组通过实地搭建三组温度实验墙体,测试得出:(1)呼吸墙体一天中的温度变化经历了四个阶段(保温-过渡-隔热-保温),在保温隔热阶段温度变化差异较大,而在过渡阶段温度变化差异不大。(2)呼吸墙体一天中的最高温度出现比普通墙体滞后1小时。实验证明呼吸墙体的热工性能优于普通墙体。为了验证测试结果的可靠性,用Fluent软件对三组实验墙体进行了模拟计算,结果基本一致。同时得出呼吸墙体比普通墙体传热量减少5.42W,也进一步说明呼吸墙体的热工性能优于普通墙体。为了更好地推广应用呼吸墙体,本文选取了工程中常用的不同墙体材料,通过模拟分析及计算传热系数并对比规范指标,得出最佳空气层厚度为40mm-60mm,同时分析发现呼吸墙体的高度变化对其传热性能影响不大。综上所述,本文通过实际调研、理论计算、实验测量及模拟验算,得出呼吸墙体的热工性能优于普通墙体,具有良好的保温隔热性能;且得出其最佳的空气层厚度范围及高度、厚度等因素对墙体的影响。因此呼吸墙体不仅能够广泛的应用于各类公共建筑的围护结构中,而且能为今后呼吸墙体的深入研究提供可靠参考依据。
[Abstract]:The breathing wall is equipped with intermediate air layer, which can effectively reduce building energy consumption, heat insulation, noise reduction and so on.With the increasing energy consumption of public buildings, the application of respiratory wall with energy saving advantage is increasing.In order to obtain the influencing factors of energy consumption, heat transfer law and reasonable thickness of breathing wall, the energy-saving technology of breathing wall is studied in this paper. The conclusion of the research has important theoretical significance and engineering application value.In this paper, the material and thickness of respiratory wall are the main influencing factors of energy consumption through field investigation.In order to grasp the energy-saving effect of the breathing wall, this paper takes the actual project as an example, calculates the thermal index of the breathing wall and compares the common wall with the same structure. It is concluded that the energy-saving efficiency of the breathing wall is increased by 18% than that of the ordinary wall.In order to reduce the thickness and weight of the breathing wall and improve the safety of the structure, the material and thickness of the wall are optimized. The heat transfer coefficient of the respiratory wall is reduced by 20.38 and the thermal inertia index is increased by 20.67 after the optimization.At the same time, the temperature of the inner, outer and air layer of the breathing wall is reduced by 1.9 鈩,
本文编号:1769578
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1769578.html