复合调热调湿材料的理论、制备及性能研究
发布时间:2018-05-14 02:39
本文选题:多孔材料 + 相对湿度 ; 参考:《南京大学》2017年博士论文
【摘要】:随着社会的发展,人类社会对能源的需求越来越大。能源的消耗,带来了一系列的环境问题。建筑在全生命周期过程中,其消耗的能源约占人类能源消耗的50%,而其中暖通空调系统消耗的能源可以占建筑物消耗能源总量的50%以上。暖通空调系统负荷包括潜热负荷和显热负荷,潜热负荷主要源于对室内环境相对湿度的控制,而同时相对湿度对人体舒适性、健康和工作效率也有很重要的影响。本论文则是在这一背景下,试图通过被动节能技术调控室内的温湿度,从而达到节能的目的。本论文主要包括三个部分,首先是对多孔材料的吸放湿现象进行理论分析,其次是制备能同时调热调湿的材料,并测试其性能,最后通过模拟软件对材料的节能效果进行模拟。本文首先分析了化学吸附与物理吸附的吸附过程,然后从毛细凝聚理论出发,分析了物理吸附过程中湿滞现象的成因,并对湿滞现象与孔结构的关系进行了分析,分别给出了单曲面孔结构和多曲面孔结构中湿滞现象的定性解释,并对均匀圆柱形孔内湿滞线的吸湿线与放湿线斜率进行了计算。在对湿滞现象分析的基础上,本章提出了定点调湿材料这一概念,并对理想定点调湿材料的特性进行了分析,利用AAO模板,对上述相关理论进行了验证。同时结合BET多分子层吸附理论,从理论出发,给出了湿滞环内循环的吸放湿路径描述公式。文章分析了材料的传湿系数和湿容在非常数情况下的湿缓冲情况,在考虑表面换湿系数的情况下,推导出包含换湿系数时的湿缓冲值,并给出具体的计算形式。接着,考虑外界相对湿度波动是近似简谐波动,并在此条件下,给出了材料在平衡之后的吸放湿量,并给出了相关的修正系数方程。测试了 VCPCM(火山石粉与微胶囊复合材料)在不同相对湿度状况下的湿缓冲值,并利用软件模拟计算的方法,分析比较了石膏板、混凝土、加气混凝土以及云杉板四种材料在波动环境下吸放湿量的精确值以及通过湿缓冲值计算得到的值,其结果表明推导得到的修正系数可以很好地修正利用湿缓冲值计算得到的吸放湿量。接着通过正硅酸乙酯制备出二氧化硅,并利用共混法封装相变材料,然后将相变材料与硅藻土混合,制备出复合调热调湿材料。利用正硅酸乙酯,通过溶胶凝胶法,制备出微胶囊封装相变材料,并与硅藻土复合制备出复合调热调湿材料。利用一甲基三乙氧基硅烷,通过溶胶凝胶法,制备出微胶囊封装相变材料,并与火山石粉、沸石粉以及海泡石粉等几种矿物分别制备出不同的复合调热调湿材料。通过测试,其结果表明相变材料的热学性能得到提高,过冷度降低,复合材料的着火点提高。同时每种复合材料的吸湿性能都得到提高,传湿系数更大,湿缓冲值也比相应的矿物更大,且通过与石膏板的对比,复合材料的传湿性能远大于石膏板。其中VCPCM的湿缓冲值达到了"优秀"级别。最后利用EnergyPlus软件计算了南京与兰州两个在不同气候条件下城市中建筑的室内温度、相对湿度以及能耗情况。计算结果表明,在利用了调热调湿材料之后,室内环境的温度、相对湿度的波动幅度明显小于参照组,同时计算可得在五个月内的南京建筑的平均节能约为11.6%,兰州建筑的平均节能约为28.8%。
[Abstract]:With the development of society, the demand for energy is increasing. The consumption of energy brings a series of environmental problems. In the whole life cycle, the energy consumption of the building accounts for about 50% of the human energy consumption, and the energy consumed by HVAC system can account for more than 50% of the total energy consumption of the building. The load of the system includes the latent heat load and the sensible heat load. The latent heat load is mainly derived from the control of the relative humidity in the indoor environment, while the relative humidity has an important influence on the human comfort, health and efficiency. In this paper, this paper tries to control the temperature and humidity in the room by the dynamic energy saving technology. This paper mainly includes three parts, the first is the theoretical analysis of the absorption and release of the porous material, the second is to prepare the material which can simultaneously heat and adjust the humidity, and test its performance. Finally, the simulation software is used to simulate the energy saving effect of the material. The adsorption and adsorption of chemical adsorption and physical adsorption are first analyzed. Proceeding from the capillary condensation theory, the cause of the wet hysteresis in the physical adsorption process is analyzed, and the relationship between the wet hysteresis and the pore structure is analyzed. The qualitative explanation of the wet hysteresis in the single curved face structure and the multi curved face structure is given respectively, and the slope of the wet line and the wetting line in the uniform circular cylindrical hole is also introduced. On the basis of the analysis of wet hysteresis, this chapter puts forward the concept of fixed-point wetting material, and analyses the characteristics of the ideal fixed-point humidifying material. Using the AAO template, the related theories are verified. At the same time, combining the theory of BET multi molecular layer adsorption, the absorption and desorption of the internal circulation of wet hysteresis loop is given. In this paper, the moisture transfer coefficient and wet capacity of the material are analyzed in a very few conditions. Under the condition of the coefficient of surface wetting, the moisture retarding value containing the moisture transfer coefficient is derived, and the specific form of calculation is given. Then, the fluctuation of the relative humidity is considered to be an approximate harmonic wave, and under this condition, The moisture absorption of the material after the balance is given, and the related correction coefficient equation is given. The wet impulse of the VCPCM (volcanic powder and microcapsule composite) under the condition of different relative humidity is tested and the four materials of gypsum board, concrete, aerated concrete and spruce board are analyzed and compared by the method of software simulation and calculation. The exact value of the moisture content and the value calculated through the wet impulse are calculated under the fluctuating environment. The results show that the derived correction coefficient can well amend the moisture absorption and desorption amount obtained by the wet impulse. Then the silica is prepared by the ethyl orthosilicate, and the phase change material is encapsulated with the blending method, and then the phase change material is made. Mixed with diatomite, the composite heat and humidity control material was prepared. Using the ethyl orthosilicate, the microcapsule encapsulated phase change material was prepared by sol-gel method, and the compound heat regulating and humidifying material was prepared with the diatomite. The microcapsule package phase change material was prepared by using the methyl triethoxysilane and the sol-gel method. The results show that the thermal properties of the phase change materials are improved, the supercooling degree is reduced and the ignition point of the composite is improved. At the same time, the hygroscopic property of each composite is improved, the moisture transfer coefficient is greater, and the humidity is slow. Compared with the corresponding mineral, the wetting performance of the composite is much greater than that of plasterboard by comparing with the plasterboard. The wet slow impulse of VCPCM reaches the "excellent" level. Finally, the indoor temperature, relative humidity and energy consumption of two buildings in Nanjing and Lanzhou under different climate conditions are calculated using EnergyPlus software. The calculation results show that the fluctuation of temperature and relative humidity in indoor environment is obviously less than that of reference group, and the average energy saving of Nanjing building in five months is about 11.6%, and the average energy saving of Lanzhou building is about 28.8%..
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TU50
【参考文献】
相关期刊论文 前9条
1 刘刚;彭琛;刘俊跃;;国外建筑节能标准发展历程及趋势研究[J];建设科技;2015年14期
2 戴旭;;被动式节能建筑中的主动节能技术应用[J];中国住宅设施;2014年05期
3 郑佳宜;陈振乾;;硅藻土基调湿建筑材料的应用仿真模拟[J];东南大学学报(自然科学版);2013年04期
4 陈勇;郭金涛;王重庆;刘晓勤;马正飞;;金属有机骨架材料MIL-101的合成及CO吸附性能[J];南京工业大学学报(自然科学版);2012年05期
5 杨茜;章易;;我国发展绿色建筑任重道远[J];中国住宅设施;2006年02期
6 罗曦芸,金鑫荣;文物保护用复合型调湿剂的机理研究[J];化工新型材料;2000年12期
7 罗曦芸;调湿材料的开发[J];化工新型材料;1997年03期
8 冯乃谦,李桂芝,邢锋;调湿材料的研究[J];新型建筑材料;1994年06期
9 顾惕人;试论de Boer-Zwikker公式在溶液吸附中的应用[J];科学通报;1978年05期
相关硕士学位论文 前3条
1 杨骏;多孔调湿材料对室内热湿环境的影响[D];南京大学;2015年
2 龚旎;医院建筑热湿环境舒适与健康影响研究[D];重庆大学;2011年
3 胡芳芳;中英美绿色(可持续)建筑评价标准的比较[D];北京交通大学;2010年
,本文编号:1885985
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1885985.html