钢板混凝土组合墙早期应力场分布测试及模拟分析研究
本文选题:钢板混凝土组合剪力墙 + 温度场 ; 参考:《吉林建筑大学》2017年硕士论文
【摘要】:钢板混凝土组合剪力墙结构在当今的工程建设中,特别是在超高层与大跨度结构中,占有着举足轻重的地位。钢板混凝土组合墙常选用高性能混凝土,这主要归功于其流动性与自密实性效果显著,可以很大程度满足对高强度与超高泵送方面的需求。但在施工过程中,由于所需的高性能混凝土水泥用量较多,因而在施工初期的水化放热量也较大,这导致结构在内外温度上形成了温度差,在水化热降温阶段,钢板混凝土组合墙结构内部由于受到了温度收缩作用的影响,促使结构内部产生了较大的拉应力,同时受到其内部钢板、栓钉等的约束作用,使得结构产生了裂缝。在实际工程上,如天津117大厦等多个重大工程,在施工过程中就先后出现过钢板混凝土组合墙开裂的现象,这严重影响了结构的耐久性。综上,对钢板混凝土组合剪力在施工过程中因温度场与温度应力而导致墙体开裂的研究显的迫在眉睫。首先,本文总结了近几年国内外对钢板混凝土组合剪力墙裂缝控制方面的研究现状,又着重阐述钢板混凝土组合墙在温控和温度裂缝方面的理论认识。其次,从钢板的施工、混凝土配合比的优化设计及钢板的监测三方面制定了裂缝控制试验方案。最后,利用ABAQUS有限元软件对钢板混凝土组合剪力墙因温度变化引起裂缝产生的过程进行了模拟,模拟主要由两部分组成,分别是在施工早期由混凝土水化热引起结构内外温度变化的过程与温度下降段钢板混凝土组合墙内部应力变化的过程。本文主要研究内容及最终结论:(1)对温度场与温度应力的基本理论及相关的有限元计算方法进行了归纳总结;(2)对钢板混凝土组合剪力墙试验方案制定方面,分别从钢板的焊接工艺和结构施工、大体积高性能混凝土优化设计等几方面进行了研究和改进,并对28d的监测的数据进行了归纳分析;(3)本文中的试验墙取自北京某超高层的B3层14轴核心筒墙体,试验墙的高为4.8m,厚度为1.2m,钢板的厚度为38mm。通过对所监测试验墙的特点分析,并结合类似项目的传感器布置经验,拟在板内1/2高度处布置4个测点,每个测点按不同埋设深度布置3~7层传感器,每层传感器分为水平竖直两个方向,用以监测混凝土浇筑之后在不同时间段、不同深度上的应变变化及钢板在相应时间的温度变化;(4)通过ABAQUS的二次开发接口,编译了高性能混凝土水化热HETVAL用户子程序,并最终实现了水化热随龄期的变化;(5)通过导入HETVAL子程序,对所建立的钢板混凝土组合墙模型进行了温度场的分析,并对比分析了理论模拟值与实测值,得出了一般规律;(6)采用弥散开裂模型对钢板混凝土组合剪力墙模型进行了温度应力的分析。最终,通过对比试验实测结果与模拟分析结果得出以下结论:在钢板的施工、混凝土的优化设计等几方面做了改进后的试验墙,其真实裂缝的分布情况及出现的位置与模拟结果达到了基本吻合,这证明了在试验中对钢板的施工工艺和混凝土配合比的优化设计,较为成功的控制住了钢板混凝土组合剪力墙早期裂缝的出现,这对未来在钢板混凝土组合剪力墙早期裂缝的再研究具有积极的作用。
[Abstract]:Steel plate concrete composite shear wall structure plays an important role in the construction of today's engineering, especially in the super high rise and large span structure. The high performance concrete is often used in the steel plate concrete composite wall, which is mainly due to its remarkable fluidity and self compacting effect. It can greatly satisfy the high strength and super high pump delivery. But in the course of construction, because the required high performance concrete cement is more used, the hydration heat of the concrete at the beginning of the construction is also large, which leads to the formation of the temperature difference between the internal and external temperature. In the stage of the hydration heat and cooling, the internal structure of the steel plate concrete composite wall is influenced by the temperature shrinkage effect. In the actual project, such as Tianjin 117 mansion and other important projects, the cracking of the steel plate concrete composite wall appeared in the construction process, which seriously affected the durability of the structure. The research on the wall cracking caused by the temperature field and the temperature stress in the construction of the steel plate concrete shear force is imminent. Firstly, this paper summarizes the research status of the crack control of the steel plate concrete composite shear wall at home and abroad in recent years, and emphasizes on the temperature control and the temperature crack in the concrete composite wall of the steel plate. Secondly, from three aspects of the construction of steel plate, the optimum design of concrete mix ratio and the monitoring of steel plate, the test scheme of crack control is formulated. Finally, the ABAQUS finite element software is used to simulate the process of the crack caused by the temperature change of the steel plate concrete composite shear wall, and the simulation is mainly composed of two parts. The process of changes in the internal and external temperature of the structure inside and outside of the structure caused by the hydration heat of concrete at the early stage of construction and the internal stress change of the steel plate concrete composite wall at the temperature drop section. The main contents and final conclusions of this paper are as follows: (1) the basic theory of the temperature field and the temperature stress and the related finite element calculation method are summarized and summarized; (2) In the formulation of the test scheme for the steel plate concrete composite shear wall, the welding technology and construction of the steel plate, the optimization design of the large volume and high performance concrete are studied and improved respectively, and the data of the monitoring of the 28d are summarized and analyzed. (3) the test wall in this paper is taken from the 14 axis core tube of a super high rise in Beijing. The wall, the height of the test wall is 4.8m, the thickness is 1.2m, the thickness of the steel plate is 38mm. through the analysis of the characteristics of the monitoring test wall, and combined with the experience of the sensor arrangement of similar projects, 4 measuring points are arranged at the 1/2 height in the plate. Each measuring point is arranged at different embedment depth of the 3~7 layer sensor, and each layer is divided into two directions in a horizontal vertical direction, It is used to monitor the change of strain at different time, different depth and the temperature change at the corresponding time after concrete pouring. (4) through the two development interface of ABAQUS, the HETVAL user subroutine of high performance concrete hydration heat is compiled, and the change of the hydration heat with the age is finally realized; (5) by introducing the HETVAL subroutine, the The temperature field is analyzed in the model of steel plate concrete composite wall, and the general rules are obtained by comparing the theoretical values and the measured values. (6) the thermal stress analysis of the composite shear wall model of the steel plate concrete is analyzed by the diffusion cracking model. Finally, the results of comparison test and simulation analysis are obtained. The following conclusion: the improved test wall has been made in the construction of steel plate and the optimized design of concrete. The distribution of the real cracks and the location of the actual cracks are basically consistent with the simulation results. This proves that the steel plate is successfully controlled by the optimum design of the steel plate construction technology and the concrete mix ratio. The emergence of early cracks in concrete composite shear walls will play a positive role in the future study of early cracks in composite shear walls of steel plate and concrete.
【学位授予单位】:吉林建筑大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU755.7
【相似文献】
相关期刊论文 前10条
1 ;第十期混凝土实验室主任研修班将于2008年4月在浙江杭州举办[J];商品混凝土;2008年01期
2 王雪峰;;混凝土的发展历程和趋势[J];河南建材;2009年06期
3 李鸿恩;混凝土工作性测定方法的研究[J];水利水电技术;1963年02期
4 陈义荣;;混凝土工作性测定方法[J];混凝土与水泥制品;1987年04期
5 尤志洁;复合矿粉细度对高性能混凝土工作性影响[J];低温建筑技术;2003年03期
6 苏胜,岳素贞,米文瑜;粉煤灰影响高性能混凝土工作性的研究[J];华北科技学院学报;2005年03期
7 曾文雄;;新拌水泥混凝土工作性的测试方法[J];广东建材;2006年02期
8 米文瑜;;粉煤灰对高性能混凝土工作性的影响研究[J];煤炭科学技术;2007年07期
9 伍崇明;丁德馨;张辉赤;沈媛媛;;屏蔽混凝土用原材料性能试验研究[J];混凝土;2007年12期
10 王顺强;佘如春;郝树琴;;废弃灰浆在复合砂预拌混凝土中的应用[J];粉煤灰;2009年03期
相关会议论文 前10条
1 王立久;詹海燕;任铮钺;;无裂缝模网混凝土研究[A];HPC2002第四届全国高性能混凝土学术研讨会论文集[C];2002年
2 黄中和;吴俊毅;陈豪吉;蔡文博;;自充填混凝土工作性之探讨[A];高强与高性能混凝土及其应用——第五届学术讨论会论文集[C];2004年
3 陈豪吉;黄中和;刘得弘;;骨材}配\
,
本文编号:1894661
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1894661.html