饮用水应急处理技术与设备研究
本文选题:饮用水应急处理设备 + 模块化 ; 参考:《山东建筑大学》2017年硕士论文
【摘要】:本文研发了一种移动式、可以快速送达灾区、对不同水源具有较强适应性的饮用水应急处理设备。本文的主要研究内容为中试试验研究、设备开发和设备试运行研究。(1)中试试验研究目前国内外饮用水应急处理设备多采用以“超滤+反渗透处理”为核心的工艺技术路线。然而膜工艺供水量小,对高浑水源及微污染水源的适应性较差,虽然能取得较好的出水水质,但膜污染问题往往难以解决。针对以上问题,研制了以“水力旋流器+双级过滤”为核心工艺的中试试验设备。中试试验的目的是研究设备对小清河水(济南段)及高浑水的最佳处理效果、设备最大处理能力及最优化运行参数等。以小清河水(济南段)为原水的中试试验研究:原水CODMn、浊度和氨氮分别为4.3~4.8mg/L、30~33NTU和0.8~1.1mg/L。中试试验设备对原水中CODMn、浊度和氨氮的去除率分别为52%、96%和54%,设备出水CODMn、浊度和氨氮可以达到2.3mg/L、2NTU和0.4mg/L以下。以高浑水为原水的中试试验研究:原水浊度为100~500NTU,水力旋流器、一级过滤罐和二级过滤罐对浊度的去除率分别为15%~45%、78%~95%和36%~71%。随着原水中浊度的增加,水力旋流器对浊度的去除率越来越高。试验结果表明,中试试验工艺可以有效的去除高浑水(浊度为100~500NTU)水体中的悬浮污染物,浊度的总去除率99%,设备出水浊度为2.27NTU以下。(2)设备开发在中试试验基础上,对水质净化工艺进行设计,设备采用“水力旋流器+双级过滤+复合吸附”的净水工艺。水力旋流器筒体内径D为200mm。3组串联的罐体分别组成一级过滤、二级过滤和复合吸附,每组由2个罐体并联。罐体直径D=1m,长度H=1.8m。一级过滤罐装填有粒径大小为1.2~2mm精制无烟煤滤料,二级过滤罐装填有粒径大小为0.8~1.2mm精制无烟煤滤料,复合吸附罐装填有由活性炭和多孔无机吸附剂按质量比3:1组合而成的复合吸附材料。设备采用预投加单过硫酸氢钾复合盐的消毒方式。车载底盘选择中国重汽生产的HOVA系列8×8全驱越野底盘。车长*宽*高为11.8米*2.5米*3.4米,车载底盘上整装集装箱式设备方舱,内含取水装置、水质净化工艺、15kW的柴油发电机及自控系统控制柜等。设备采用先进的自动控制技术及在线监测技术以提高饮用水应急处理设备的管理水平。(3)设备试运行研究饮用水应急处理设备装配完成后以济南市白云湖水做为原水进行了为期一个月的调试、试运行试验。原水水温为23~34℃、浊度为104~145NTU、CODMn为8.1~9.97mg/L、氨氮为0.152~0.218mg/L、亚硝酸盐氮为0.013~0.034mg/L、UV254为0.095~0.14 cm-1、UV410为0.034~0.055cm-1。饮用水应急处理设备对原水中浊度、CODMn、氨氮、亚硝酸氮、UV254和UV410的总去除率分别为99.4%、70.0%、55.4%、59.6%、25.0%和85.3%。经送样检测,设备出水水质达到《生活饮用水卫生标准》(GB5479—2006)的要求。本文中饮用水应急处理设备生产成本约187.5万,利用市政供电的设备运行费用为0.52元/m3,而采用自主发电的设备运行费用为0.79元/m3,设备的国产化率约为96%。
[Abstract]:This paper has developed a mobile type of emergency treatment equipment for drinking water which can quickly reach the disaster area and have strong adaptability to different water sources. The main research contents of this paper are pilot test research, equipment development and equipment trial operation research. (1) pilot test research on drinking water emergency treatment equipment at home and abroad is mostly used "ultrafiltration + anti" However, membrane technology has small water supply and poor adaptability to high muddy water and micro polluted water. Although it can get better water quality, membrane pollution is often difficult to solve. In view of the above problems, a pilot test set with "hydrocyclone + double stage filter" as the core technology is developed. The purpose of the pilot test is to study the best treatment effect of the equipment on the Xiaoqing River (Ji'nan section) and the high muddy water, the maximum processing capacity of the equipment and the optimum operating parameters. The pilot test study of the small Qinghe River (Ji'nan section) as the original water: the original water CODMn, the turbidimetric and ammonia nitrogen separation as 4.3~4.8mg/L, 30~33NTU and 0.8~1.1mg/L. test equipment The removal rates of turbidity and ammonia nitrogen for CODMn in the original water were 52%, 96% and 54% respectively. The effluent was CODMn. The turbidity and ammonia nitrogen could reach 2.3mg/L, 2NTU and 0.4mg/L. The pilot test of the high muddy water as the original water: the turbidity of the original water was 100~500NTU, the hydrocyclone, the first grade filter tank and the two grade filter tank were 15%~45%, 7 respectively. 8%~95% and 36%~71%. with the increase of turbidity in the original water, the removal rate of turbidity is higher and higher. Experimental results show that the pilot test process can effectively remove the suspended pollutants in high turbidity water (turbidity is 100~500NTU), the total removal rate of turbidity is 99%, the turbidity of the prepared effluent is below 2.27NTU. (2) equipment development in pilot test On the basis of the test, the water purification process is designed, the equipment adopts the water purification process of "hydrocyclone + double stage filtration + compound adsorption". The inner diameter of the cylinder body of the hydrocyclone is D for the 200mm.3 group, which consists of the first grade filtration, the two stage filtration and the compound adsorption. Each group is paralleled by 2 tanks. The diameter of the tank is D=1m, and the length H=1.8m. level is over. The filter canned is filled with 1.2~2mm refined anthracite filter material, and the two grade filter canned is filled with 0.8~1.2mm refined anthracite filter material. The compound adsorption canned filled with activated carbon and porous inorganic adsorbent is combined with the mass ratio of 3:1. The equipment adopts the disinfectant of pre cast and potassium bisulfate compound salt. Car chassis selection of HOVA series 8 x 8 full drive off-road chassis produced by China heavy steam. The length * width * is 11.8 meters *2.5 m *3.4 meters high, the car chassis on the chassis, containerized box type equipment, water intake, water purification process, 15kW diesel generator and automatic control system control cabinet. The equipment adopts advanced automatic control technology and online Monitoring technology to improve the management level of emergency treatment equipment for drinking water. (3) equipment trial operation study of drinking water emergency treatment equipment assembly completed after the completion of the Ji'nan Baiyun Lake water as the original water for a month of commissioning, trial operation test. The original water temperature is 23~34 C, turbidity is 104~145NTU, CODMn is 8.1~9.97mg/L, ammonia nitrogen is 0.152~0.2 18mg/L, nitrite nitrogen is 0.013~0.034mg/L, UV254 is 0.095~0.14 cm-1, UV410 is 0.034~0.055cm-1. drinking water emergency treatment equipment for primary water turbidity, CODMn, ammonia nitrogen, nitrite nitrogen, UV254 and UV410, the total removal rates are 99.4%, 70%, 55.4%, 59.6%, 25% and 85.3%.. The water quality of the equipment can reach the sanitary drinking water sanitation. Standard > (GB5479 - 2006) requirements. In this article, the production cost of drinking water emergency treatment equipment is about 1 million 875 thousand, the operation cost of the equipment using municipal power supply is 0.52 yuan /m3, and the operating cost of the equipment using independent power generation is 0.79 yuan /m3, and the domestic production rate of the equipment is about 96%.
【学位授予单位】:山东建筑大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU991.2
【相似文献】
相关期刊论文 前10条
1 李红;饮用水处理中存在的问题[J];甘肃科技;2000年01期
2 ;以微滤为核心的饮用水处理技术[J];中国环保产业;2002年07期
3 李朝晖;注意选择饮用水处理用聚丙烯酰胺[J];给水排水;2004年10期
4 杨莹;;域外饮用水处理工艺介绍[J];环境;2007年09期
5 郝晓地;魏丽;仇付国;;未来饮用水处理技术及其工程应用展望[J];中国给水排水;2007年24期
6 高乃云;;浅议饮用水处理中聚丙烯酰胺的应用现状及潜在危害[J];给水排水;2010年11期
7 徐中惠;;消毒技术在饮用水处理上的研究进展[J];科技信息;2013年19期
8 杨福才;;饮用水处理的未来趋向[J];公用科技;1998年01期
9 袁波祥,陈莎,杨圣杰;臭氧化技术在饮用水处理中的应用[J];北方交通大学学报;2001年06期
10 张颖,顾平,齐庚申;膜技术应用于饮用水处理的进展[J];中国给水排水;2001年05期
相关会议论文 前10条
1 陈守真;;未来饮用水处理技术及其工程应用[A];饮水安全的理论与实践——福建省科协第九届学术年会水利分会场论文集[C];2009年
2 林禾杰;王祖薇;;西北农村饮用水处理的技术创新与推广[A];全国SBR污水处理技术研讨会论文集[C];2004年
3 魏桂兰;敖惠;朱玫;周藜;陈依江;;生活饮用水卫生质量与影响因素的分析[A];贵州省环境诱变剂学会第二届学术交流会论文集[C];2005年
4 刘治学;李福云;;用于饮用水处理的聚铁在生产中现存沉淀现象的研究[A];2013中国水处理技术研讨会暨第33届年会论文集[C];2013年
5 高从X&;;膜技术与饮用水处理[A];2010年膜法市政水处理技术研讨会论文集[C];2010年
6 刘超;强志民;;饮用水处理过程中紫外光降解土菌灵的研究[A];第五届全国环境化学大会摘要集[C];2009年
7 刘卫红;杨常亮;孙s钍,
本文编号:1902727
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1902727.html