当前位置:主页 > 科技论文 > 建筑工程论文 >

用于自复位结构体系的新型钢板剪力墙研究

发布时间:2018-05-21 09:19

  本文选题:自复位结构 + 新型钢板剪力墙 ; 参考:《苏州科技大学》2017年硕士论文


【摘要】:为了提高钢板剪力墙的耗能性能与整体结构的复位性能,本文在开蝴蝶形缝钢板剪力墙的基础上,提出了一种新型的钢板剪力墙—带边缘加劲的单个蝴蝶型钢板剪力墙。新型钢板剪力墙不仅具有开蝴蝶形缝钢板剪力墙延性好、耗能性能高的特点,还具有空间利用合理、试件加工便捷等优势。为进一步对这种新型的钢板剪力墙进行研究,在BASE试件基础上,改变钢板剪力墙的厚度、钢板两侧加劲肋的厚度、钢绞线的数量、钢绞线的面积、跨高比、轴压比以及内填蝴蝶形钢板剪力墙的数量,利用有限元软件对系列试件进行模拟,得出滞回曲线、骨架曲线、耗能曲线、承载力退化曲线以及刚度退化曲线。然后,结合试件的变形和应力云图进行分析。结果表明:1)结构能够满足设计要求,钢框架在循环加载过程中处于弹性阶段,震后复位性能良好,可继续投入使用,而单个加劲蝴蝶形钢板剪力墙屈服后进入塑性耗能,震后不能再重复使用,将其替换即可使结构恢复使用功能。2)加劲肋与钢板焊接连接,直接决定着结构的耗能及复位性能。在板厚不变的情况下,稍微增大加劲肋的厚度,将使结构的承载力和耗能性能略有提升,对试件的刚度和稳定承载力起到很好地补强效果,不会影响结构的刚度退化。轴压比作用会使结构出现P-Δ效应,随着轴压比增加,承载力会降低。框架的跨高比较低时,试件在加载过程中会形成斜向拉力带,耗能性能提升。但跨高比越小的框架,试件的复位性能越差。3)经过合理设计,选取钢板厚度6mm、两侧加劲肋厚度3.5mm、初始预拉力175kN并控制试件的高厚比在440左右,选取框架的跨高比1.7,能够使结构在耗能理想的同时达到预期的复位效果。4)当内填钢板数量增加时,钢板的厚度应减小,但板厚较低时,结构的耗能性能较差,满足不了抗震性能设计要求。经设计得出,内置两块板时,宜选取4mm试件,高厚比控制在660左右;内置三块板时,宜选取3mm试件,高厚比控制在880左右。此外,在用钢量相同的情况下,单块蝴蝶形钢板剪力墙的抗震性能优于多块蝴蝶形钢板剪力墙。5)本文所研究的钢板剪力墙结构兼具自复位及新型钢板剪力墙的性能特点,能够满足设计要求,达到性能目标。而多块钢板剪力墙将较薄的蝴蝶形钢板墙提升到了应用价值。
[Abstract]:In order to improve the energy dissipation performance of the steel plate shear wall and the reset performance of the whole structure, a new type of steel plate shear wall, a single butterfly steel plate shear wall with stiffening edge, is proposed on the basis of opening the butterfly shaped steel plate shear wall. The new steel plate shear wall not only has the characteristics of good ductility and high energy dissipation performance, but also has the advantages of reasonable space utilization and convenient processing of specimens. In order to further study this new steel plate shear wall, the thickness of stiffened ribs on both sides of steel plate, the quantity of steel strand, the area of steel strand, the ratio of span to height are changed on the basis of BASE specimen. The axial compression ratio and the number of internally filled butterfly steel plate shear walls are simulated by finite element software. The hysteretic curve, skeleton curve, energy consumption curve, bearing capacity degradation curve and stiffness degradation curve are obtained. Then, the deformation and stress cloud diagram of the specimen are analyzed. The results show that the structure can meet the design requirements, the steel frame is in the elastic stage in the process of cyclic loading, the reposition performance after the earthquake is good, and it can continue to be put into use, while the single stiffened butterfly steel plate shear wall can enter the plastic energy consumption after yielding. After the earthquake, the structure can not be reused again, and its replacement can make the structure resume using function. 2) the stiffener rib is welded to the steel plate, which directly determines the energy consumption and the reset performance of the structure. When the thickness of the plate is constant, the bearing capacity and energy dissipation performance of the structure will be improved slightly by increasing the thickness of the stiffener slightly, and the stiffness and the stable bearing capacity of the specimen will be strengthened well, and the stiffness of the structure will not be affected by the degradation of the stiffness. The effect of axial compression ratio will lead to P- 螖 effect, and the bearing capacity will decrease with the increase of axial compression ratio. When the span height of the frame is low, an oblique tensile band will be formed during the loading process, and the energy dissipation performance will be improved. However, the lower the ratio of span to height, the worse the reposition performance of the specimen is. 3) after reasonable design, the thickness of steel plate is 6 mm, the thickness of stiffened rib is 3.5 mm, the initial pretension 175kN and the ratio of height to thickness of the specimen are controlled at about 440. Selecting the ratio of span to height of the frame at 1.7 can make the structure achieve the expected reset effect at the same time of energy consumption. 4) the thickness of the steel plate should be reduced when the number of steel plates is increased, but the energy dissipation performance of the structure is poor when the thickness of the plate is lower. Can not meet the seismic performance design requirements. The results show that when two boards are built in, the 4mm specimen should be selected, the ratio of height to thickness should be controlled around 660, and when three boards are built in, the 3mm specimen should be selected and the ratio of height to thickness should be controlled at about 880. In addition, the seismic performance of single butterfly steel plate shear wall is better than that of many butterfly steel plate shear walls under the same steel content.) the steel plate shear wall structure studied in this paper has the characteristics of self-reset and new type steel plate shear wall. Ability to meet design requirements and achieve performance goals. And many steel plate shear walls will be thin butterfly steel plate wall to the application value.
【学位授予单位】:苏州科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU392.4

【相似文献】

相关期刊论文 前10条

1 郭彦林;周明;;非加劲与防屈曲钢板剪力墙性能及设计理论的研究现状[J];建筑结构学报;2011年01期

2 郭彦林;周明;董全利;王小安;;三类钢板剪力墙结构试验研究[J];建筑结构学报;2011年01期

3 蒋路;;带缝钢板剪力墙应用技术分析[J];建筑科学与工程学报;2012年02期

4 宁子健;郝际平;于金光;钟炜辉;白睿;;无粘结十字加劲钢板剪力墙结构抗剪性能分析[J];钢结构;2013年07期

5 ;钢板剪力墙[J];钢结构;1997年02期

6 陈国栋,郭彦林;十字加劲钢板剪力墙的抗剪极限承载力[J];建筑结构学报;2004年01期

7 万红霞,谢伟平,王小平;考虑屈曲后强度的钢板剪力墙极限剪力计算[J];钢结构;2004年03期

8 郭彦林,董全利;钢板剪力墙的发展与研究现状[J];钢结构;2005年01期

9 王迎春;郝际平;李峰;孙彤;;钢板剪力墙力学性能研究[J];西安建筑科技大学学报(自然科学版);2007年02期

10 曹志亮;;带缝钢板剪力墙弹性稳定性分析[J];钢结构;2007年03期

相关会议论文 前10条

1 段清星;邹自明;曾清华;何欢欢;赵伟;;钢板剪力墙研究现状和工程应用[A];钢结构工程研究(九)——中国钢结构协会结构稳定与疲劳分会第13届(ISSF-2012)学术交流会暨教学研讨会论文集[C];2012年

2 朱俊;陆道渊;黄良;徐麟;;天津津塔结构钢板剪力墙力学性能分析[A];建筑结构(2009·增刊)——第二届全国建筑结构技术交流会论文集[C];2009年

3 王伟栋;蒋路;;带缝钢板剪力墙强度与稳定相关关系及调节措施研究[A];'2009全国钢结构学术年会论文集[C];2009年

4 孙飞飞;王文涛;刘桂然;;开缝钢板剪力墙的理论分析与数值模拟[A];第七届全国现代结构工程学术研讨会论文集[C];2007年

5 高辉;孙飞飞;李国强;;组合钢板剪力墙简化计算模型[A];第七届全国现代结构工程学术研讨会论文集[C];2007年

6 孙飞飞;刘桂然;王文涛;;钢框架钢板剪力墙结构的非线性静力分析[A];第七届全国现代结构工程学术研讨会论文集[C];2007年

7 孙学水;赵伟;高长喜;尹卫泽;张卫东;关超;;横向加劲钢板剪力墙试验和有限元研究[A];第四届全国钢结构工程技术交流会论文集[C];2012年

8 何欢欢;赵剑丽;赵伟;;稀疏竖向加劲钢板剪力墙试验研究[A];钢结构工程研究(九)——中国钢结构协会结构稳定与疲劳分会第13届(ISSF-2012)学术交流会暨教学研讨会论文集[C];2012年

9 蔡克挀;朱,

本文编号:1918608


资料下载
论文发表

本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1918608.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c54a5***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com