当前位置:主页 > 科技论文 > 建筑工程论文 >

施工群塔监测智能控制系统研究

发布时间:2018-06-06 12:55

  本文选题:塔式起重机 + 智能监控 ; 参考:《东南大学》2017年硕士论文


【摘要】:近年来随着各类高层、超高层建筑的兴起和生产自动化程度的提高,塔式起重机在现代化建筑施工过程中应用越来越广、作用越来越大,并且不断向大型化、智能化方向发展。在大型化方面主要是起升高度、变幅幅度越来越大,起重量不断增加,这样就对塔机的安全性、可靠性、高效性提出了更高的要求。现代计算机技术、传感器技术、无线通信技术的飞速发展为塔机安全保护装置的研制提供了技术基础。为此。本文以传感器技术、计算机技术和测控技术为基础,研制开发塔机状态实时监控系统,使其更安全、更有效、更平稳地作业。在分析塔机工作特点和安全监测要求的基础上,论文讨论了吊高、吊重、幅度、回转角度、风速、温湿度等几种参数的监测方法,以及对这些参数如何进行数据处理,采用何种方式进行显示。通过轴销式起重量传感器、增量式光电编码器、绝对式光电编码器、风速传感器完成对起吊重量、起升高度、小车变幅、回转角度、工作现场风速等关键参数的信号采集。各参数数据可通过GPRS无线传输方式传到地面远程监测中心,用户通过客户端软件可实时了解塔机的现场运行状态、工作环境及地理位置等信息,对违规操作提出报警,大大方便了工程监管人员对塔机工作状态的监视。在通信上使用ZigBee无线网络传输技术,分析了 ZigBee无线通信技术的协议构架、网络拓扑结构,确定塔机防碰撞监控系统采用网状网络的组网方式。考虑到塔机的工作环境比较恶劣,干扰源较多,因而在硬件电路设计中,采用光电隔离技术、去耦技术、滤波技术等来提高系统的可靠性,在软件设计中采用看门狗、数字滤波等措施来增强系统的抗干扰能力。基于传感技术、智能分析技术、通讯技术及信息技术等开发的塔机安全监控系统,实现了对塔式起重机自身结构安全危险、与障碍物的碰撞危险、与多台塔式起重机的协作碰撞危险的准确判别和准确预警,并能实现有效预警和有效控制,真正有效地减少和降低塔式起重机安全事故的发生,提高了塔机的作业效率。该系统是在传统机械和电子传感器的基础上结合当前数字处理技术、传感器技术、滤波技术而开发的一套新型、高可靠的塔式起重机工作状态监控系统。该系统具有良好的实时性、可靠性以及广泛的应用价值,符合塔机监控系统小型化、智能化的发展方向。完备的控制功能、丰富的监测功能、稳定的性能、友好的界面和优良的性能价格比,已在现场应用取得了良好的效果。
[Abstract]:In recent years, with the rise of various high-rise buildings and the improvement of production automation, tower cranes are more and more widely used in the construction process of modern buildings, and continue to develop towards the direction of large-scale and intelligent. In the aspect of large scale, the rise height, the amplitude of variation is more and more large, and the lifting weight is increasing, which puts forward higher requirements for the safety, reliability and efficiency of the tower crane. The rapid development of modern computer technology, sensor technology and wireless communication technology provides a technical basis for the development of tower crane safety protection device. To this end. Based on sensor technology, computer technology and measurement and control technology, this paper develops a real-time monitoring system for tower crane status, which makes it safer, more effective and more stable. On the basis of analyzing the working characteristics and safety monitoring requirements of tower crane, the paper discusses the monitoring methods of several parameters, such as hoisting height, lifting weight, amplitude, rotation angle, wind speed, temperature and humidity, and how to deal with these parameters. How to display. By means of shaft pin lifting weight sensor, incremental photoelectric encoder, absolute photoelectric encoder and wind speed sensor, the signal collection of the key parameters such as lifting weight, lifting height, vehicle amplitude change, rotation angle, working field wind speed and so on is completed. The parameter data can be transmitted to the ground remote monitoring center by GPRS wireless transmission mode. The users can know the status, working environment and geographical location of the tower crane in real time through the client software, and give an alarm to the illegal operation. It greatly facilitates the monitoring of the working state of the tower crane by the project supervisor. The ZigBee wireless network transmission technology is used in the communication. The protocol framework and network topology of ZigBee wireless communication technology are analyzed. It is determined that the tower crane anti-collision monitoring system adopts the netting mode of mesh network. Considering that the working environment of the tower crane is relatively bad and that there are many sources of interference, the photoelectric isolation technology, decoupling technology and filtering technology are used in the hardware circuit design to improve the reliability of the system, and the watchdog is used in the software design, Digital filtering and other measures to enhance the system's anti-jamming ability. Based on sensing technology, intelligent analysis technology, communication technology and information technology, the tower crane safety monitoring system is developed, which realizes the safety danger of tower crane structure and collision with obstacles. The cooperative collision hazard with multiple tower cranes can accurately distinguish and warn accurately, and can realize effective early warning and effective control, reduce and reduce the occurrence of safety accidents of tower cranes, and improve the efficiency of tower cranes. Based on the traditional mechanical and electronic sensors, this system is a new and reliable monitoring system for the working state of tower cranes, which combines the current digital processing technology, sensor technology and filtering technology. The system has good real time, reliability and wide application value. It is in line with the development direction of miniaturization and intelligence of tower crane monitoring system. Complete control function, rich monitoring function, stable performance, friendly interface and excellent performance-price ratio have achieved good results in field application.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU61

【参考文献】

相关期刊论文 前10条

1 程江涛;;塔式起重机监控技术研究[J];中国市场;2016年32期

2 任东;;塔式起重机防碰撞监控的专利技术综述[J];黑龙江科技信息;2016年21期

3 张冬;李彦明;刘成良;胡鸿彬;;基于ZigBee的塔式起重机防碰撞系统研究[J];起重运输机械;2016年07期

4 倪丽莎;杨静;惠秦双;;面向施工现场的塔式起重机安全监控信息系统研究[J];施工技术;2015年18期

5 张翼;耿远程;;基于优化核算子的塔机远程智能监控技术研究[J];机电技术;2015年02期

6 谢恩来;;塔式起重机运行状态监控系统的应用[J];电气传动自动化;2015年02期

7 赵磊;;基于无线传感器网络的塔式起重机监控系统[J];数字技术与应用;2014年09期

8 刘虎;周蕾;;基于多传感器的塔式起重机监控仪研究与开发[J];建筑机械;2014年03期

9 王勋;周悦;李皓明;;基于无线传感器网络的塔式起重机监控系统[J];建筑机械;2013年11期

10 喻乐康;王如意;;国际塔式起重机发展新态势[J];建设机械技术与管理;2013年02期

相关硕士学位论文 前10条

1 周飞虎;塔式起重机防碰撞技术与安全监控系统研究[D];长安大学;2015年

2 柯磊;基于WEB平台建筑吊塔设备远程监控系统的研究与应用[D];电子科技大学;2015年

3 高怡;基于风险预测的塔式起重机防碰撞系统研究[D];大连理工大学;2012年

4 余向阳;基于GPRS的塔式起重机远程监测系统的设计与实现[D];湖南大学;2012年

5 宋宇宙;基于ZigBee塔机无线传感监控系统的设计与实现[D];湖南大学;2012年

6 梁凯;基于ARM的塔式起重机监控系统研究与开发[D];沈阳理工大学;2012年

7 邵国平;塔吊安全监测记录系统研制[D];哈尔滨理工大学;2010年

8 谢小光;基于GPRS的塔机实时状态远程监控系统研究[D];浙江工业大学;2009年

9 吴杰;塔式起重机智能监控及故障诊断系统[D];郑州大学;2005年

10 马松龄;塔式起重机运行状态监控系统研究[D];西安建筑科技大学;2005年



本文编号:1986592

资料下载
论文发表

本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1986592.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户08904***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com