基于广义Bayes理论地基参数的Powell反演力学模型(英文)
本文选题:Powell反演 + 力学模型 ; 参考:《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》2017年07期
【摘要】:目的:通过Powell优化反演方法建立Winkler地基参数的反演力学模型,获得地基参数的稳定数值解。创新点:根据Bayes理论,推导广义Bayes目标函数;利用Fourier变换,推求Winkler地基上简支板的Fourier闭式解,建立地基参数的反演力学模型。方法:1.根据Bayes理论,推导广义Bayes目标函数(公式(4))及地基参数的广义Bayes均值和方差表达式(公式(9)和(11));2.引入Mindlin理论,推导Winkler地基上板的控制微分方程,推求Winkler地基上简支板的Fourier闭式解;3.提出步长的一维自动寻优方案,结合Powell优化方法建立Winkler地基参数的广义Bayes反演力学模型。结论:1.地基参数的反演迭代过程稳定收敛于参数真值;2.与Kalman滤波方法和共轭梯度法不同,Powell优化方法的迭代过程不涉及目标函数的偏导数计算;3.广义Bayes目标函数能同时考虑不同测量点和不同测量次数的位移实测资料,计算效率更高。
[Abstract]:Aim: to establish the inversion mechanics model of Winkler foundation parameters by Powell optimization inversion method and obtain the stable numerical solution of foundation parameters. Innovation: according to Bayes theory, the generalized Bayes objective function is deduced, and the Fourier closed solution of simply supported plate on Winkler foundation is derived by Fourier transformation, and the inverse mechanics model of foundation parameters is established. Method 1: 1. Based on the Bayes theory, the generalized Bayes objective function and the expressions of the generalized Bayes mean value and variance of the foundation parameters are derived. By introducing the Mindlin theory, the governing differential equation of the plate on the Winkler foundation is derived, and the Fourier closed solution of the simply supported plate on the Winkler foundation is derived. A one-dimensional automatic optimization scheme based on step size is proposed and a generalized Bayes inverse mechanical model of Winkler foundation parameters is established by combining with Powell optimization method. Conclusion 1. The inversion iterative process of foundation parameters converges stably to the true value of the parameters. Different from the Kalman filtering method and the conjugate gradient method, the iterative process of the Kalman optimization method does not involve the calculation of the partial derivative of the objective function. The generalized Bayes objective function can take into account the measured displacement data of different measuring points and different times of measurement at the same time, so the calculation efficiency is higher.
【作者单位】: Department
【基金】:supported by the Fundamental Research Funds for the Central Universities of China(No.NS2014003)
【分类号】:TU47
【相似文献】
相关期刊论文 前10条
1 邓乃扬,诸梅芳;关于Powell方法理论基础的探讨[J];北京工业大学学报;1979年02期
2 张翔,陈建能;内点罚函数法调用Powell法求优时的1个注[J];福建农业大学学报;2000年03期
3 葛艳;逄海萍;孟友新;江峰;;求解连续空间优化问题的Powell蚁群算法[J];哈尔滨工业大学学报;2009年12期
4 钱晓山;阳春华;徐丽莎;;Powell-DE算法在软测量参数预估中的应用[J];湖南大学学报(自然科学版);2013年12期
5 高旅端;改进的主轴Powell算法[J];北京工业大学学报;1981年04期
6 霍军周;李广强;滕弘飞;;用并行遗传/Powell/蚁群混合算法求解卫星舱布局问题(英文)[J];大连理工大学学报;2006年05期
7 胡斌祥;顾伯达;;一维柔性监控搜索技术及其对Powell型约束变尺度法的改进[J];武汉工学院学报;1989年01期
8 周虎儿;张湘平;徐琰;;基于Powell方法的引信步进应力加速寿命试验数据处理[J];探测与控制学报;2007年02期
9 周岳;赵春彦;;Sargent改进的Powell方法在桥梁沉降基础预测中的应用[J];数学理论与应用;2011年03期
10 戴维葆;邹平华;李罡;杜京武;;基于PSO-Powell算法重建炉膛截面温度场的研究[J];燃烧科学与技术;2008年06期
相关重要报纸文章 前1条
1 ;Gray Powell撒谎?[N];电脑报;2010年
,本文编号:1991309
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1991309.html