太阳能建筑非均匀节能构造及热环境分析
本文选题:太阳能建筑 + 室外综合温度 ; 参考:《西安理工大学》2017年硕士论文
【摘要】:目前全球能源形式严峻,而我国太阳能资源丰富,发展利用太阳能对我国可持续发展具有重要的现实意义,尤其对于建筑节能意义重大。太阳能建筑可以有效利用太阳能来降低建筑能耗,与此同时还可以通过优化太阳能建筑构造来改善室内热环境。太阳能建筑受室外太阳辐射强度影响,不同地区太阳辐射强度不同,而太阳辐射受太阳方位角和太阳高度角的影响,所以围护结构的室外综合温度与朝向密切相关。本文基于外扰朝向差异,根据我国建筑气候特点,分别选取了被动式太阳能采暖气候分区:最佳气候A区、适宜气候A区、适宜气候C区的代表地区:拉萨、中卫和西安(年累计太阳辐射分别为:7138MJ/m~2、5853MJ/m~2、4406MJ/m~2 ),通过现场调研测试,结合各地区当地农村居住建筑构造特点与农民居住生活习惯,对建筑进行功能分区与室内热环境分区设计。然后利用非均匀节能构造设计原理,通过理论分析及软件模拟,对基于外扰朝向差异下的太阳能建筑围护结构构造体系进行了详细的研究分析。本论文研究得到的主要成果为:(1)根据中卫和拉萨地区室内热环境测试结果,发现当地冬季室内热环境较差,均未达到规范标准;根据中卫地区的实地调研结果,发现当地居住者对室内热环境满意度较差,对于改善冬季室内热环境有着强烈愿望;计算了西安、中卫、拉萨地区冬至日的室外综合温度;确定采暖期室内热舒适指标为:南向非边侧房间平均温度不低于14℃,昼夜温差不大于6℃;北向非边侧房间平均温度不低于8℃,昼夜温差不大于6℃;南北外墙壁面温度差不大于4℃。(2)在实地调研与文献分析的基础上为三个地区总结抽象出一个既有建筑模型,并在此基础上优化改造出一个典型建筑模型;根据非均匀节能构造原理计算三个地区的非均匀传热系数,确定以KS*= 1.34KE*=1.35KW* =1.49KN*作为典型建筑模型的外墙构造选择基准;根据稳态方法计算了典型建筑模型和既有建筑模型在冬至日的传热耗热量,结果表明西安、中卫、拉萨地区4mm普通塑钢中空玻璃的南向窗户均为得热构件,其中拉萨地区得热量最大,中卫次之,西安最小;相比单玻铝合金外窗,拉萨地区南向单位面积外窗可节能71.43W/m~2,中卫地区可节能80.59W/m~2,西安地区可节能64.36 W/m~2。典型建筑模型采用粉煤灰蒸养砖时整个建筑耗热量仅为既有建筑模型的37.1% (西安)、34.1% (中卫)、27.9% (拉萨);使用粉煤灰烧结砖时典型建筑的耗热量仅为既有建筑的34.5% (西安)、31.5% (中卫)、24.9% (拉萨)。(3)通过DesignBuilder软件计算典型建筑模型的室内空气温度,发现南向房间温度均比北向房间温度高;典型建筑模型的主卧空气温度相对既有建筑模型有明显提高,其提升值:西安为4℃左右、中卫为5℃左右、拉萨为5℃左右。对于主卧和客厅等南向房间,典型建筑的室内空气温度相比既有建筑有明显提高;而对于储物间等北向房间,拉萨地区典型建筑的室内空气温度相比既有建筑略有降低,中卫和西安地区典型建筑的室内空气温度相比既有建筑略有升高。这种主要使用房间温度的明显提高和次要使用房间温度的基本不变,达到了本文建筑模型热环境分区的目的。
[Abstract]:At present, the global energy forms are severe, and the solar energy resources are rich in our country. The development and utilization of solar energy has important practical significance for the sustainable development of our country, especially for building energy conservation. Solar buildings can effectively use the solar energy to reduce the energy consumption of the building, and the solar building can be improved by optimizing the solar building structure to improve the energy consumption. Indoor thermal environment. Solar energy buildings are affected by the outdoor solar radiation intensity, and the solar radiation intensity is different in different regions. The solar radiation is influenced by the azimuth and solar altitude angle of the sun, so the outdoor comprehensive temperature of the enclosure structure is closely related to the orientation. The passive solar heating climate zone: the best climate A area, suitable climate A area, suitable climate C area representative area: Lhasa, central Wei and Xi'an (annual cumulative solar radiation is respectively: 7138MJ/m~25853MJ/m~24406MJ/m~2), through field investigation and testing, combined with local rural residential construction characteristics and farmers living habits, The function zoning and indoor thermal environment zoning are designed. Then, using the principle of non uniform energy saving structure design, through theoretical analysis and software simulation, the structure system of solar building enclosure structure based on external disturbance orientation is studied and analyzed in detail. The main achievements of this paper are as follows: (1) according to the central defense and the central defense. The indoor thermal environment test results of Lhasa area found that the local winter indoor thermal environment was poor and did not reach the standard standard. According to the field survey results in the middle Wei area, it was found that the local residents were less satisfied with the indoor thermal environment and had a strong desire to improve the indoor thermal environment in winter, and the winter solstice in Xi'an, central and Lhasa areas were calculated. The indoor thermal comfort index is determined as: the indoor thermal comfort index of the heating period is that the average temperature of the south to non side room is not less than 14 C, the temperature difference of the day and night is not more than 6 degrees C, the average temperature of the north side room is not less than 8 C, the temperature difference of the day and night is not more than 6, and the difference of the wall temperature difference between the north and the south is not more than 4. (2) three on the basis of field investigation and literature analysis In this area, an existing building model is abstracted, and a typical building model is optimized on this basis. The non uniform heat transfer coefficient of three regions is calculated according to the principle of non-uniform energy saving structure, and the selection of KS*= 1.34KE*=1.35KW* =1.49KN* as a typical building model is determined; and the calculation is based on the steady state method. The heat transfer heat consumption of the typical building model and the existing building model in winter solstice shows that the south windows of the 4mm ordinary plastic steel hollow glass in the Xi'an, middle Wei and Lhasa area are all hot components, of which the Lhasa area has the highest heat, the middle guard, the smallest in Xi'an, and the outer window of the single glass aluminum alloy, and the outer window of the southern unit area of the Lhasa area. Energy saving 71.43W/m~2, central Wei area can save energy 80.59W/m~2, Xi'an area can save energy 64.36 W/m~2. typical building model using fly ash steam curing brick, the whole building consumption is only 37.1% of the existing building model (Xi'an), 34.1% (middle guard), 27.9% (Lhasa); when using powder coal ash sintered brick, the heat consumption of typical building is only 34.5% of the existing building. Xi'an), 31.5% (central guard), 24.9% (Lhasa). (3) the indoor air temperature of the typical building model is calculated by DesignBuilder software. It is found that the temperature of the south room is higher than that of the north room. The main air temperature of the typical building model is significantly higher than that of the existing building model, and its lifting value is about 4 C in Xi'an and around 5 in the center guard. The room air temperature in the typical building is significantly higher than that of the existing buildings in the southern room, such as the main bedroom and the living room, and the indoor air temperature of the typical buildings in the Lhasa area is slightly lower than that of the existing buildings, and the indoor air temperature of the typical buildings in the middle and Xi'an areas is compared with the indoor air temperature in the central and Xi'an areas. There is a slight increase in the building. The main use of the room temperature and the temperature of the secondary room are basically unchanged, and the purpose of this building model thermal environment partition is achieved.
【学位授予单位】:西安理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU111
【相似文献】
相关期刊论文 前10条
1 ;美国新型太阳能建筑[J];福建能源开发与节约;2002年04期
2 刘林森;太阳能建筑——科技与市场的结合点[J];建筑知识;2002年03期
3 张惠婷,宋秋;太阳能建筑技术在城市住宅中的应用[J];建筑;2003年05期
4 ;首座奥运全太阳能建筑在京落成[J];能源研究与信息;2003年02期
5 京时;首座全太阳能建筑落成[J];墙材革新与建筑节能;2003年06期
6 无忧;太阳能建筑商机无限[J];建设科技;2003年12期
7 ;太阳能建筑发展方向[J];大众用电;2004年07期
8 仲继寿;太阳能建筑的技术途径和发展策略[J];太阳能;2004年04期
9 仲继寿;;太阳能建筑的技术途径和发展策略[J];中国建设动态.阳光能源;2004年04期
10 仲继寿;太阳能建筑发展思路[J];建设科技;2005年12期
相关会议论文 前10条
1 仲继寿;;太阳能建筑发展的中国之路[A];中国可再生能源学会第八次全国代表大会暨可再生能源发展战略论坛论文集[C];2008年
2 仲继寿;;太阳能建筑的技术途径和发展策略[A];全国住宅工程太阳能热水应用研讨会论文集[C];2004年
3 张滨;赵建平;;现阶段普及推广太阳能建筑的可行性分析[A];海峡两岸第十四届照明科技与营销研讨会专题报告暨论文集[C];2007年
4 李树超;;浅谈节能环保的太阳能建筑[A];2007中国环境科学学会学术年会优秀论文集(下卷)[C];2007年
5 何如朴;;甘肃太阳能的利用及发展[A];加入WTO和中国科技与可持续发展——挑战与机遇、责任和对策(下册)[C];2002年
6 俞善庆;;太阳能建筑与生态楼[A];21世纪太阳能新技术——2003年中国太阳能学会学术年会论文集[C];2003年
7 胡英;;浅谈大连地区太阳能建筑[A];全国住宅工程太阳能热水应用研讨会论文集[C];2004年
8 鲍英华;赵龙;;太阳能建筑的可操作性探讨[A];建筑环境与建筑节能研究进展——2007全国建筑环境与建筑节能学术会议论文集[C];2007年
9 邸們;王W,
本文编号:2025034
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2025034.html