钢管自应力自密实高强混凝土柱偏心受压性能试验研究
发布时间:2018-06-28 11:34
本文选题:自应力 + 自密实 ; 参考:《工程力学》2017年07期
【摘要】:为提高钢管内混凝土的密实度,减小混凝土的收缩,以保证钢管与混凝土更好地共同工作,满足实际工程需要,该文提出采用钢管自应力自密实高强混凝土柱,考虑偏心距、长径比和初始自应力等参数的影响,设计制作21根钢管自应力自密实高强混凝土柱和3根钢管自密实高强混凝土柱试件,通过偏心受压试验,考察试件的破坏形态,实测试件的荷载-挠度曲线和荷载-应变曲线,分析各参数对偏心受压试件受力性能的影响。研究表明:偏心受压试件主要发生弯曲失稳破坏;试件极限承载力随偏心距或长径比增大而减小,当初始自应力为3 MPa~5 MPa时,钢管自应力自密实混凝土偏心受压柱的极限承载力提高9.2%~11.7%。参考国内相关规范,通过试验数据回归分析,提出钢管自应力自密实高强混凝土柱偏心受压承载力计算公式,可供工程设计参考。
[Abstract]:In order to improve the compactness of concrete in steel tube and reduce the shrinkage of concrete, so as to ensure that the steel tube and concrete can work together better and meet the practical engineering needs, this paper puts forward a self-stress self-compacting high-strength concrete column with eccentricity in mind. In this paper, 21 steel tube self-compacting high-strength concrete columns and three steel tube self-compacting high-strength concrete columns are designed and fabricated under the influence of the ratio of length to diameter and initial self-stress. The failure patterns of the specimens are investigated by eccentric compression test. The load-deflection curves and load-strain curves of the specimens were measured and the effects of various parameters on the mechanical properties of eccentric compression specimens were analyzed. The results show that the bending failure occurs mainly in eccentric compression specimens, and the ultimate bearing capacity decreases with the increase of eccentricity or aspect ratio. When the initial self stress is 3 MPA, the ultimate bearing capacity of the specimens decreases with the increase of the eccentric distance or the ratio of length to diameter. The ultimate bearing capacity of self-stress self-compacting concrete eccentrically compressed columns is increased by 9. 2 and 11. 7. With reference to relevant domestic codes and regression analysis of test data, a formula for calculating the eccentric compressive capacity of steel tube self-compacting high-strength concrete columns is put forward, which can be used as a reference for engineering design.
【作者单位】: 武汉大学土木建筑工程学院;
【基金】:国家自然科学基金项目(51478367)
【分类号】:TU398.9
【相似文献】
相关期刊论文 前10条
1 高学善;;自应力混凝土的发展和应用[J];冶金建筑;1980年08期
2 李世龙;;能源消耗与自应力混凝土管[J];混凝土与水泥制品;1981年01期
3 李生庆;铁大武;;对硅酸盐自应力混凝土及其压力管一些技术问题的探讨[J];沈阳建筑工程学院学报;1987年Z1期
4 李世龙;;制管用自应力混凝土的配合比设计[J];混凝土与水泥制品;1992年05期
5 杨瑞珊;;自应力混凝土管的现状和展望[J];混凝土与水泥制品;1993年05期
6 阮起楠,于缘宝;自应力管(300~600mm)转为一阶段生产的一次成功的尝试[J];混凝土与水泥制品;1999年05期
7 姜峰,黄承逵,戴建国;自应力混凝土结构限制膨胀过程有限元法分析[J];大连理工大学学报;2001年05期
8 ;自应力混凝土,
本文编号:2077860
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2077860.html