巨型混凝土转换梁开洞受力性能研究
本文选题:开洞转换梁 + 有限元模拟 ; 参考:《西安工业大学》2017年硕士论文
【摘要】:随着我国经济的快速发展,人民生活水平日益提高,人们对建筑功能的要求越来越高,使建筑结构形式也变的复杂多样。因此,应用在高层建筑中的转换结构也越来越普遍,而其中应用最多的转换结构为梁式转换层。在当前的高层建筑中,由于存在大量的设备管道、通风管道,为了降低建筑结构的内部层高,提高楼层的空间利用率,需要在转换层的转换梁不同部位开设较大的洞口。因此,本文对开有不同洞口的转换梁进行了有限元分析。通过六种不同的工况形式,应用ABAQUS有限元软件分别建立了 31个有限元模型对其受力机理进行了对比分析。研究的主要内容及成果如下:(1)在剪力墙满跨布置的情况下,对转换梁不开洞及不同位置开洞6个模型进行有限元分析。分析结果表明,转换梁上的洞口开在跨中部位对结构受力最为有利。但是,随着洞口位置向梁两端移动,转换梁内部应力对结构越来越不利。因此,建议将洞口布置在转换梁跨中Ln/2区段部位。(2)在剪力墙非满跨的情况下,建立了五组25个模型进行有限元分析,研究了转换梁跨中开洞及梁端开洞对转换结构的影响程度及应力分布规律。研究结果表明,转换梁与剪力墙的交界处会产生很大的压应力和剪应力,尤其是剪力墙端部与转换梁洞口处的交界,剪力墙底部的压应力和剪应力都会相应增大。因此在结构设计时,应对墙体端部采取加强配筋或增设暗柱、加翼缘的方法以提高其承压及抗剪的能力。(3)通过本文所建立的六组31个有限元模型,对其计算结果进行对比分析,找出开洞转换梁的受力薄软环节。结果表明在转换梁洞口的边缘,尤其是洞口的角部,均会出现严重的应力集中现象,在转换梁的两端hb/2(hb为转换梁高度)范围内,均会出现较大的剪应力。因此,在结构设计时,应在洞口上下及两侧设置暗柱,在转换梁端部布置充足的箍筋来保证转换梁的抗剪性能。最后,根据有限元分析结果,对其构造处理及有可能出现的破坏形式进行总结,为工程设计中的开洞转换结构提出一些设计建议。
[Abstract]:With the rapid development of our country's economy, people's living standard is improving day by day, and people's demand for building function is higher and higher, which makes the architectural structure form complex and diverse. Therefore, the transfer structures used in high-rise buildings are becoming more and more common, and the most widely used transfer structures are beam transfer floors. In the current high-rise building, due to the existence of a large number of equipment ducts and ventilation ducts, in order to reduce the height of the inner layer of the building structure and improve the space utilization ratio of the floors, it is necessary to open large openings in different parts of the transfer beam of the transfer layer. Therefore, the finite element analysis of the transfer beam with different openings is carried out in this paper. By using Abaqus finite element software, 31 finite element models were established to analyze the mechanical mechanism of the model. The main contents and results are as follows: (1) in the case of full span arrangement of shear walls, finite element analysis is carried out on six models of the transfer beam without opening and opening at different locations. The analysis results show that the opening of the hole in the middle span of the transfer beam is the most favorable for the structure. However, as the opening position moves to both ends of the beam, the internal stress of the transfer beam becomes more and more unfavorable to the structure. Therefore, it is suggested that the hole should be arranged in the Ln / 2 section of the transfer beam span. (2) five groups of 25 models are established for finite element analysis under the condition that the shear wall is not full span. The influence degree and stress distribution of the middle hole and the end hole of the transfer beam on the transfer structure are studied. The results show that there will be great compressive stress and shear stress at the junction between the transfer beam and the shear wall, especially at the junction between the end of the shear wall and the opening of the transfer beam, and the compressive stress and shear stress at the bottom of the shear wall will increase accordingly. Therefore, in structural design, strengthening reinforcement or adding hidden column and flange should be adopted to improve the capacity of bearing pressure and shear resistance. (3) through the six groups of 31 finite element models established in this paper, the calculation results are compared and analyzed. Find out the thin soft link of the open hole transfer beam. The results show that there is a serious stress concentration at the edge of the hole of the transfer beam, especially at the corner of the hole. In the range of hb/2 at both ends of the transfer beam (HB is the height of the transfer beam), large shear stress will occur. Therefore, when the structure is designed, dark columns should be set up at the top and bottom of the hole, and sufficient stirrups should be arranged at the end of the transfer beam to ensure the shear behavior of the transfer beam. Finally, according to the results of the finite element analysis, the structural treatment and the possible failure forms are summarized, and some design suggestions are put forward for the open hole transition structure in the engineering design.
【学位授予单位】:西安工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU973
【参考文献】
相关期刊论文 前10条
1 徐娜;逯静洲;陈林;朱旭;;开洞深梁的拉压杆模型设计方法研究[J];烟台大学学报(自然科学与工程版);2012年01期
2 李雅;;转换梁受力的影响因素分析[J];建筑监督检测与造价;2011年01期
3 蔡健;黄泰峗;李静;;腹部开有圆孔的钢筋混凝土简支梁的试验研究[J];土木工程学报;2009年10期
4 张劲;王庆扬;胡守营;王传甲;;ABAQUS混凝土损伤塑性模型参数验证[J];建筑结构;2008年08期
5 雷拓;钱江;刘成清;;混凝土损伤塑性模型应用研究[J];结构工程师;2008年02期
6 刘荣桂,吕志涛;混凝土(RC/PC)开孔梁实验研究与理论分析[J];土木工程学报;2004年07期
7 陈进,江世永,孙亮;单跨框支转换梁应力分布规律的有限元分析[J];四川建筑科学研究;2004年01期
8 古松,潘文;钢筋混凝土开孔梁抗剪设计及有限元分析[J];昆明理工大学学报(理工版);2003年05期
9 徐重人;偏心转换梁受力性能的有限元分析[J];建筑结构;2003年09期
10 魏琏,王森;转换梁上部墙体受力特点及设计计算方法的研究[J];建筑结构;2001年11期
相关会议论文 前1条
1 周凯敏;吴炎海;;ABAQUS在钢筋混凝土开孔梁模拟中的应用[A];第十三届全国工程建设计算机应用学术会议论文集[C];2006年
相关硕士学位论文 前6条
1 周杰明;混凝土开洞深梁极限承载力研究[D];武汉理工大学;2011年
2 魏文杰;框支剪力墙结构的弹性静力分析[D];西南交通大学;2008年
3 张叶田;高层建筑转换层结构技术经济比较研究[D];浙江大学;2008年
4 马延财;转换梁与上、下部结构共同作用分析[D];昆明理工大学;2008年
5 舒情;高层建筑转换梁的结构研究与设计[D];四川大学;2005年
6 徐亚军;梁式转换层结构受力研究[D];西南交通大学;2003年
,本文编号:2084327
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2084327.html