当前位置:主页 > 科技论文 > 建筑工程论文 >

视野受限条件下的行人运动实验与模型研究

发布时间:2018-08-03 11:59
【摘要】:随着经济社会的快速发展,各种结构复杂的建筑设施大量涌现,同时伴随着行人出行频率的增加和大型公共活动的增多,在一些公共场所如学校、体育馆、地铁站、火车站等经常出现大规模人群的聚集。在高密度人群环境中,个体运动严重受阻,容易引发拥挤踩踏。当前针对行人疏散的研究绝大多数都集中在行人视野正常、外界能见度良好的情况下,然而当火灾发生时产生的烟尘或其它原因造成电力照明系统崩溃会导致外界能见度下降,此时行人的视野会受到不同程度的影响。所以本文采用实验和模型相结合的方法,对视野受限下行人微观运动和疏散过程进行了研究。为获取行人在视野受限条件下运动的基础数据,我们首先开展了基本的单列行人运动实验。后期基于实验视频和轨迹分析,发现行人在视野受限情况下倾向于寻找边界和跟随前方行人运动;随着人员密度的增加,行人轨迹的侧向摆幅增大;随着能见度的降低,高密度下走停现象开始占据交通主导,并逐渐向中等密度延伸;前向距离与运动速度关系可以分为运动受限和自由运动两个阶段:在运动受限阶段,前向距离与运动速度之间的相关性随着视野受限程度的加重而越来越弱;而在自由运动阶段,不同透光率下行人的自由运动速度都符合高斯分布(vLT=0.3%~N(1.31,0.072),vLT=0.1%~N(0.71,0.092)和vLT=0.0%~N(0.45,0.102));视野受限条件下密度与流量关系大致可以分为三个阶段:自由流阶段、最大流阶段和拥挤流阶段。透光率0.3%、0.1%和0.0%下的最大流量分别为1.3s-1、1.1s-s和0.9s-1左右。为研究视野受限情况下行人的疏散过程,我们分别针对视野部分受限和完全受限两种情况开展了疏散实验和模型模拟。在部分受限的超市疏散实验中,观察到行人的一些典型行为包括跟随行为、帮助行为和寻找依附物行为。随后又设计了调查问卷进一步对受限视野下的行人疏散进行研究,发现问卷结果与实验观察结果存在一定差异。最后构建了考虑视野受限情况下行人典型行为特征的疏散模型,不同场景下模拟结果与实验结果的高度吻合验证了模型的可靠性。针对完全受限的情况,实验观察到行人首先会沿着当前的朝向运动去寻找墙壁;在找到墙后此时行人有选择左手侧方向运动的倾向;之后行人会继续沿墙运动,运动过程中行人会采取不同的策略来解决与他人的冲突,直至最后找到出口离开。此外T检验结果表明行人沿墙运动速度大于未找到墙的运动速度。随后基于实验观察和分析结果,建立了多格子人员疏散模型,模拟重现了实验中行人的典型运动特征。最后通过对比正常视野和视野完全受限下的疏散,发现两者既有相同点也有不同点。相同点是:人员在均匀分布、随机分布和集中分布下,整体的疏散时间差别不大;两种视野情况下的行人疏散时间都随着初始人员密度的增加而上升;增加出口数量能降低人员疏散时间,视野完全受限情况下效果更显著;疏散过程中连续两人通过出口的时间间隔都呈现幂律关系。不同点是:正常视野下行人运动速度更快并且疏散距离更短,故其所需的疏散时间明显要短于视野完全受限下的疏散;增加出口宽度对于正常视野下的疏散十分有利而对于视野完全受限下的疏散几乎没有影响;正常视野条件下疏散中行人大多集中在出口附近,而在视野完全受限下墙的周边是人员高密度区域。通过以上研究我们对视野受限条件下的行人运动和疏散有了更深的认识,接下来将探讨该如何对视野受限环境中的行人进行疏散引导。首先,基于多格子模型我们建立了考虑引导员存在的人员疏散模型。模型中一共设置两种行人类型:引导员和跟随者。其次,针对视野受限情况下的引导员数量、类型、分布、运动速度及引导策略对疏散时间的影响开展了模拟研究。最终模拟结果表明:有标识的引导员在人群中容易被其他行人识别,从而能发挥更大引导作用,其疏散时间较无标识的引导员情况降低了 7%;动态引导中引导员通过自身运动扩大了引导范围,疏散时间较静态引导下减少了 20%;综合考虑人力成本和疏散时间的情况下存在一个相对较优的引导员数量;引导员的均匀分布能覆盖更大的引导面积从而更有利于整体疏散,但这跟实际中其他行人的分布有关;引导员的运动速度约为其他行人速度的75%时,疏散引导效果最优;对比不同的疏散引导策略,发现综合考虑与目标行人的距离和目标行人周围人数策略下的整体疏散时间最短;多个引导员之间的交流合作能避免在选择引导目标时产生冲突,此时整体疏散效率提高了 6%。
[Abstract]:With the rapid development of the economy and society, various complex construction facilities have springing up. At the same time, with the increase of pedestrian travel frequency and the increase of large public activities, large crowds often appear in some public places such as schools, gymnasiums, subway stations and railway stations. In the high density population environment, the individual movement is serious. At present, most of the studies on pedestrian evacuation are concentrated in the case of normal pedestrian vision and good visibility, however, when the smoke or other causes caused by the fire and other causes cause the breakdown of the power lighting system, the visibility of the pedestrians will be reduced, and the vision of pedestrians will be different at this time. In order to obtain the basic data of the pedestrian movement under the limited field of vision, we first carried out a basic single row pedestrian movement experiment. In the later period, we found pedestrians based on the experimental video and the trajectory analysis. With the increase of the density of personnel, the lateral pendulum of the pedestrian path increases with the increase of the density of people. With the decrease of visibility, the phenomenon of high density down stop begins to dominate the traffic and extends to the medium density, and the relationship between the forward distance and the velocity can be divided into limited motion. In the two stage of free movement, the correlation between the forward distance and the speed of motion is becoming weaker and weaker, while in the free movement stage, the free movement speed of pedestrians under different transmittance rates conforms to the Gauss distribution (vLT=0.3% to N (1.31,0.072), vLT=0.1% to N (0.71,0.092) and vLT=0.0%. N (0.45,0.102)); the relationship between density and flow can be roughly divided into three stages: the free flow stage, the maximum flow stage and the congestion flow stage. The transmittance rate is 0.3%, the maximum flow rate under 0.1% and 0% are 1.3s-1,1.1s-s and 0.9s-1 respectively. The evacuation experiment and model simulation were carried out in two kinds of restricted and completely restricted conditions. In some restricted supermarket evacuation experiments, some typical behaviors of pedestrians were observed, including following behavior, helping behavior and finding dependent behavior. Then a questionnaire was designed to further study the pedestrian evacuation under the limited view. There are some differences between the results of the volume and the experimental results. Finally, an evacuation model of pedestrian typical behavior is constructed. The reliability of the model is verified by the high agreement between the simulation results and the experimental results in different scenes. The experimental results show that pedestrians will first follow the current orientation. The pedestrians will move along the left side and move along the left side of the wall when the wall is found. Then the pedestrians will continue to move along the wall. In the course of the movement, the pedestrian will take different strategies to solve the conflict with others until the exit is found. In addition, the T test results show that the speed of pedestrians moving along the wall is greater than that of the unfound wall. Then, based on the experimental observation and analysis results, the multiple grid personnel evacuation model was established, and the typical motion characteristics of the rows in the experiment were simulated. Finally, the same points and different points were found by comparing the evacuation of the normal field of vision and the completely limited field of vision. In the medium distribution, the whole evacuation time is not very different; the evacuation time of pedestrians in the two field of vision increases with the increase of the initial personnel density; the increase of the number of exits can reduce the time of evacuation and the effect is more obvious in the case of completely limited field of vision; the time interval of the evacuation process shows a power law relationship through the time interval of the exit. The difference is that the pedestrian movement is faster and the evacuation distance is shorter in the normal field of vision, so the evacuation time is obviously shorter than that under the complete confinement of the field of vision; the increase of the exit width is very favorable to the evacuation in the normal field of vision and has little effect on the sparse dispersion under the completely limited field of vision; in the normal field of vision evacuation Most of the pedestrians are concentrated in the vicinity of the exit, and the high density area around the wall under the full limit of vision. Through the above study we have a deeper understanding of the pedestrian movement and evacuation under the limited view of vision. Then we will discuss how to conduct evacuation guidance to the pedestrian in the restricted environment. We set up a personnel evacuation model considering the presence of the guide. There are two types of pedestrians in the model: the guide and the followers. Secondly, the effects of the number, type, distribution, velocity and guidance strategy on the evacuation time are simulated. The guide can be easily identified by other pedestrians in the crowd, and thus can play a greater guiding role. The evacuation time has been reduced by 7% than that of the unidentified guide. The guide operator in the dynamic guidance expands the guide range through its own movement, and the evacuation time is reduced by 20% under the static guidance; the manpower cost and the evacuation time are considered comprehensively. There is a relatively superior number of guides; the uniform distribution of the guide can cover a larger guide area and is more conducive to the whole evacuation, but it is related to the distribution of other pedestrians in practice; the speed of the guide is about 75% of the other pedestrian speed, and the effect of the evacuation Guide is optimal; the different evacuation guidance strategies are compared. The shortest evacuation time is taken into consideration of the distance between the target pedestrians and the number of pedestrians around the target, and the communication and cooperation between the multiple guides can avoid the conflict when choosing the guide target, and the overall evacuation efficiency is improved by 6%.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TU998.1

【相似文献】

相关期刊论文 前10条

1 邵祖峰;行人安全性研究分析及预防[J];北京汽车;2003年04期

2 刘小明,陈艳艳,安志强;北京奥运行人交通组织初探[J];国外城市规划;2004年01期

3 ;福州:"行人交通意识"调查[J];安全与健康;2004年20期

4 李珊珊;钱大琳;王九州;;考虑行人减速避让的改进社会力模型[J];吉林大学学报(工学版);2012年03期

5 ;行人闯红灯何时休?[J];汽车与安全;2009年07期

6 陈然,董力耘;中国大都市行人交通特征的实测和初步分析[J];上海大学学报(自然科学版);2005年01期

7 孙智勇;葛书芳;荣建;李美玲;;行人交通的数据采集方法研究[J];北京工业大学学报;2006年06期

8 薛智规;胡列格;;优化行人过街交通组织的方法研究[J];公路与汽运;2007年01期

9 张贵宾;李明辉;赵金凤;万晶晶;;行人过街需要分析研究[J];道路交通与安全;2007年03期

10 吴玲玲;;建设以人为本的行人过街设施[J];交通与运输;2007年05期

相关会议论文 前8条

1 鲍涵;;行人与机动车交通系统优化研究[A];转型与重构——2011中国城市规划年会论文集[C];2011年

2 张滋容;黄如妙;施学荣;陈文粹;周欣怡;;台北市“礼让行人”之推动工作与展望[A];构建生态人文交通 促进经济跨越发展——第十九届海峡两岸都市交通学术研讨会论文选编[C];2011年

3 景超;王殿海;梁潇;;路段人行横道行人过街行为心理分析[A];可持续发展的中国交通——2005全国博士生学术论坛(交通运输工程学科)论文集(上册)[C];2005年

4 郑为中;彭征;钟淑琴;;构建以人为本的城市空间导向信息服务系统——广州市行人指示标识系统解析[A];第九次全国城市道路与交通工程学术会议论文集[C];2007年

5 高鹏;王田田;周志永;万浩;;青岛市世界园艺博览会行人交通三维仿真与结果评估[A];城市时代,协同规划——2013中国城市规划年会论文集(01-城市道路与交通规划)[C];2013年

6 陈茜;谢鑫鑫;;大型活动行人消散仿真模拟[A];2007第三届中国智能交通年会论文集[C];2007年

7 王中岳;王啸君;;轨道车站及地下空间行人仿真模型行为参数标定[A];面向低碳经济的隧道及地下工程技术——中国土木工程学会隧道及地下工程分会隧道及地下空间运营安全与节能环保专业委员会第一届学术研讨会论文集[C];2010年

8 徐绍伟;姜英华;张国堂;周士琪;;行人与机动车乘员交通损伤及伤残的比较研究[A];中国法医学最新科研与实践(一)——全国第六次法医学术交流会论文精选[C];2000年

相关重要报纸文章 前10条

1 和润沣;行人交通违法治理还需多管齐下[N];兰州日报;2012年

2 袁云才;行人闯红灯挨罚警醒交通陋习[N];长沙晚报;2012年

3 杨涛;行人“生病”,单位吃药?[N];中国经济时报;2007年

4 何雪华 李佳亮;广州:行人违法通报单位[N];人民公安报·交通安全周刊;2007年

5 滕朝阳;由违法行人的血得到的教训[N];人民公安报·交通安全周刊;2007年

6 杨涛;行人“犯病”让单位“吃药”有效吗[N];中国消费者报;2007年

7 张仕洪;荆门专项整治行人交通违法[N];湖北日报;2008年

8 陈志刚 吴存庆;兰州集中整治行人交通违法[N];人民公安报·交通安全周刊;2008年

9 朱忠保;行人违章与环保缺位[N];中国保险报;2010年

10 杨涛;株连式治理有悖法治精神[N];法制日报;2011年

相关博士学位论文 前10条

1 田欢欢;行人流和疏散动力学的宏微观建模和模拟研究[D];上海大学;2015年

2 刘晓栋;行人相向流和进入流的实验与模型研究[D];中国科学技术大学;2016年

3 吴昊灵;考虑异质性的城市轨道交通车站交通设施行人流仿真研究[D];北京交通大学;2016年

4 李明华;不同场景中行人疏散微观仿真建模及疏散诱导优化研究[D];北京交通大学;2016年

5 李之红;基于差异化个体特性的密集客流疏散行为分析与建模[D];北京交通大学;2017年

6 傅丽碧;考虑人员行为特征的行人与疏散动力学研究[D];中国科学技术大学;2017年

7 郭宁;行人交通特征的实验和模型研究[D];中国科学技术大学;2017年

8 赵莹莹;基于全时空信息的行人过街运行机理研究[D];吉林大学;2017年

9 曹淑超;视野受限条件下的行人运动实验与模型研究[D];中国科学技术大学;2017年

10 孙立光;步行设施内的行人行为微观仿真模型研究[D];清华大学;2009年

相关硕士学位论文 前10条

1 栾庆熊;行人同伴群交通行为建模与仿真分析[D];昆明理工大学;2015年

2 刘劲宏;交叉口行人过街通行能力与过街设施选取研究[D];长安大学;2015年

3 李晓旭;汽车与行人碰撞事故分析方法研究[D];长安大学;2015年

4 范箫翔;M1类车辆致行人下肢损伤的生物力学机制研究[D];重庆理工大学;2015年

5 刘泽高;多出口室内行人疏散模型及其应用的研究[D];广西大学;2015年

6 高彦超;路段平面过街设施合理设置研究[D];北京工业大学;2015年

7 庞雅静;信号控制交叉口行人过街安全评价技术研究[D];河北工业大学;2015年

8 刘丽娟;城市道路路段行人过街行为研究[D];长沙理工大学;2014年

9 蔡晓斐;重庆主城区行人过街交通特性研究[D];重庆交通大学;2015年

10 张勤;考虑行人因素的交叉口信号最优控制研究[D];重庆交通大学;2015年



本文编号:2161680

资料下载
论文发表

本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2161680.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户315ac***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com