深井富水砂岩冻结解冻后的渗流应力耦合试验研究
[Abstract]:Because there is little concern about the deterioration of deep soft rock by freezing and thawing, the water conductivity of rock mass in the annular space of freezing pipe increases after thawing, and a series of flooding accidents occur. In this paper, the mechanical properties of frozen intact sandstone, frozen fractured sandstone, the development of pore structure after freeze-thaw deterioration of sandstone and the coupling characteristics of seepage and stress are studied by combining experimental and theoretical methods. Uniaxial and triaxial compression tests of frozen intact sandstone and fractured sandstone were carried out at temperatures of - 5 C, - 10 C and - 15 C. The results show that the frozen strength of red sandstone, medium sandstone and fine sandstone varies with the temperature range of - 5 C ~ - 15 C. The freezing strength of the three sandstones increases linearly with the increase of confining pressure, which conforms to the Mohr-Coulomb criterion. The temperature decreases from - 5 C to - 15 C, and the internal friction angles of frozen red sandstones, frozen medium sandstones and frozen fine sandstones increase by 9, respectively. The cohesion increases by 15.03%, 18.69% and 15.39% respectively. The influence of temperature on the cohesion of frozen sandstone is greater than that on the internal friction angle. The strength of frozen fractured red sandstone increases linearly with the increase of confining pressure. The strength of frozen fractured red sandstone decreases gradually with the increase of fracture dip angle. The failure mode of frozen horizontal fissured red red sandstone is tension failure under uniaxial compression, tension and shear composite mode under triaxial compression, and frozen fissured red red sandstone with inclination of 15 to 45 degrees under uniaxial and triaxial compression, the failure mode is ice yield fracture and shear slip along rock-ice interface. The freeze-thaw test and seepage-stress coupling test of saturated medium-sized sandstone with 450 m depth underground in Shilawusu Coal Mine were carried out under different stress conditions. Based on CT images, the three-dimensional pore structure of medium-sized sandstone before and after freeze-thaw was reconstructed, and the influence of freeze-thaw on CT-scale pore development was analyzed. The pore radius mainly distributes in the range of 10-80 micron, accounting for more than 80% of all the pore ratios. Freezing and thawing will lead to the obvious development of small pores with a radius of 10-60 micron, and the proportion of medium pores with a radius of 60-200 micron decreases obviously. The proportion of large pores with a radius of more than 200 micron increases slightly. When the osmotic pressure is lower than this value, the permeability of medium sandstone increases with the increase of osmotic pressure. When the osmotic pressure is higher than this value, the permeability of medium sandstone remains unchanged or even decreases. In the process of strain loading, when the confining pressure is 24 MPa, the permeability of all samples of medium sandstone remains unchanged or decreases with the increase of axial strain; when the confining pressure is 6 MPa, the permeability of all samples is in the initial stage, decreases with the increase of volumetric strain, and increases with the decrease of volumetric strain when entering the dilatancy stage; the confining pressure is between 12 and 18 MPa. On the basis of statistical damage constitutive theory and considering the effect of stiffness degradation on Biot coefficient during damage process, a statistical damage constitutive model considering seepage effect is constructed and different stress strips are adopted. The full stress-strain curves of frozen-thawed medium-sized sandstone under seepage conditions were validated. The model can well reflect the mechanical properties of medium-sized sandstone under seepage conditions.
【学位授予单位】:中国矿业大学(北京)
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TU45
【相似文献】
相关期刊论文 前10条
1 张玉军;热—水—应力耦合弹塑性二维有限元程序的研制[J];焦作大学学报;2005年01期
2 张玉军;;不同场热—水—应力耦合过程二维有限元分析[J];地下空间与工程学报;2007年03期
3 贺玉龙;杨立中;;温度—渗流—应力耦合作用分类[J];四川地质学报;2008年03期
4 赵士文;卢廷浩;刘仲秋;;基于渗流-应力耦合的基坑变形与稳定分析[J];江苏建筑;2010年06期
5 张玉军;;模拟冻-融过程的热-水-应力耦合模型及数值分析[J];固体力学学报;2009年04期
6 李燕,杨林德;岩体渗流应力耦合作用研究综述[J];红水河;2005年02期
7 杨林德;李燕;李鹏;;各向异性岩体渗流应力耦合模型[J];地下空间与工程学报;2006年05期
8 何翔;冯夏庭;张东晓;;岩体渗流 应力耦合有限元计算的精细积分方法[J];岩石力学与工程学报;2006年10期
9 张玉军;;尤卡山坑道规模试验热-气-应力耦合过程的离散元模拟[J];岩石力学与工程学报;2007年S2期
10 左建平;周宏伟;谢和平;鞠杨;;温度和应力耦合作用下砂岩破坏的细观试验研究[J];岩土力学;2008年06期
相关会议论文 前10条
1 刘成学;杨林德;李鹏;;渗流-应力耦合问题的多参数优化反演研究[A];和谐地球上的水工岩石力学——第三届全国水工岩石力学学术会议论文集[C];2010年
2 杨天鸿;李连崇;朱万成;唐春安;李夕兵;刘继山;;基于数字图像技术岩石温度渗流应力耦合破坏机制的数值模拟初探[A];第九届全国岩石力学与工程学术大会论文集[C];2006年
3 王媛;;裂隙发育方向对岩体渗流应力耦合的影响[A];岩土力学的理论与实践——第三届全国青年岩土力学与工程会议论文集[C];1998年
4 于冰;陈兴华;;岩体裂隙渗流与应力耦合关系的实验研究[A];第二届全国青年岩石力学与工程学术研讨会论文集[C];1993年
5 王俊光;梁冰;李平;;渗透动水压力作用下的裂隙岩体渗流与应力耦合分析[A];水工渗流研究与应用进展——第五届全国水利工程渗流学术研讨会论文集[C];2006年
6 刘先珊;林耀生;孔建;;考虑卸荷作用的裂隙岩体渗流应力耦合研究[A];第九届全国岩土力学数值分析与解析方法讨论会论文集[C];2007年
7 孙粤琳;沈振中;吴越健;;岩体裂缝扩展的渗流-应力耦合分析模型[A];2007重大水利水电科技前沿院士论坛暨首届中国水利博士论坛论文集[C];2007年
8 顾元宪;赵红兵;陈飚松;亢战;;结构的热-应力耦合优化设计[A];“力学2000”学术大会论文集[C];2000年
9 纪佑军;刘建军;薛强;;基坑开挖中渗流-应力耦合模拟[A];第九届全国岩土力学数值分析与解析方法讨论会论文集[C];2007年
10 刘先珊;;基于DDA的裂隙岩体非饱和渗流应力耦合模型研究[A];第一届中国水利水电岩土力学与工程学术讨论会论文集(上册)[C];2006年
相关博士学位论文 前4条
1 易海洋;地质处置封装系统的渗流—应力耦合数值模拟研究[D];中国矿业大学(北京);2016年
2 刘念;深井富水砂岩冻结解冻后的渗流应力耦合试验研究[D];中国矿业大学(北京);2017年
3 杨天鸿;岩石破裂过程渗透性质及其与应力耦合作用研究[D];东北大学;2001年
4 于洪丹;Boom Clay渗流—应力耦合长期力学特性研究[D];中国科学院研究生院(武汉岩土力学研究所);2010年
相关硕士学位论文 前9条
1 王朋;化学-温度-应力耦合作用对岩石力学性能的影响[D];上海理工大学;2014年
2 王兴宏;裂隙茅口灰岩渗流—应力耦合试验研究[D];湖南科技大学;2015年
3 李鹏飞;红外焦平面探测器热—应力耦合分析[D];河南科技大学;2014年
4 李鹏;软岩渗流应力耦合分析参数反演的理论与方法[D];同济大学;2008年
5 郭玉龙;渗流与应力耦合作用对边坡稳定性影响的研究[D];武汉理工大学;2005年
6 孙f,
本文编号:2189092
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2189092.html