工程车辆翼型热管式散热器性能研究
发布时间:2018-10-25 09:52
【摘要】:为了提升散热器综合性能,保持车辆工作性能稳定,根据生产商提供的几何参数,应用计算流体力学对管片式散热器单元性能进行数值计算,将结果与试验数据对比,以验证仿真模型的准确性.以尽量保持散热面积为前提,提出以NACA0018翼型作为热管特征,计算并对比两者的JF因子,进一步讨论其与NACA0012,NACA0021间的换热系数和压力损失差异.仿真结果表明:通过对散热器单元体的数值模拟,可在一定误差范围内获取散热器冷侧换热系数和压力损失;与扁平管翅片结构相比,仿真区间内翼型热管翅片的JF因子略高,当流速达到12m/s时,JF评价因子高出约15.97%;与NACA0018相比,NACA0021具有较高的换热系数和压力损失,设计时应根据相对厚度酌情选择.
[Abstract]:In order to improve the comprehensive performance of the radiator and keep the working performance of the vehicle stable, according to the geometric parameters provided by the manufacturer, the performance of the tubular radiator unit was calculated numerically by computational fluid dynamics, and the results were compared with the experimental data. To verify the accuracy of the simulation model. On the premise of keeping the heat dissipation area as far as possible, the NACA0018 airfoil is used as the heat pipe feature to calculate and compare their JF factors, and the difference of heat transfer coefficient and pressure loss between them and NACA0012,NACA0021 is further discussed. The simulation results show that the heat transfer coefficient and pressure loss of the cooling side of the radiator can be obtained within a certain error range by numerical simulation of the radiator unit, and the JF factor of the fin of the airfoil is slightly higher than that of the flat tube fin structure. When the flow rate reaches 12m/s, the evaluation factor of JF is about 15.97 higher than that of NACA0018. Compared with NACA0018, NACA0021 has higher heat transfer coefficient and pressure loss, and should be selected according to the relative thickness.
【作者单位】: 华中科技大学能源与动力工程学院;华北理工大学机械工程学院;吉林大学机械科学与工程学院;
【基金】:湖北省技术创新专项基金资助项目(2016AAA045) 国家科技支撑计划资助项目(2013BAF07B04)
【分类号】:TU603;TK172
本文编号:2293351
[Abstract]:In order to improve the comprehensive performance of the radiator and keep the working performance of the vehicle stable, according to the geometric parameters provided by the manufacturer, the performance of the tubular radiator unit was calculated numerically by computational fluid dynamics, and the results were compared with the experimental data. To verify the accuracy of the simulation model. On the premise of keeping the heat dissipation area as far as possible, the NACA0018 airfoil is used as the heat pipe feature to calculate and compare their JF factors, and the difference of heat transfer coefficient and pressure loss between them and NACA0012,NACA0021 is further discussed. The simulation results show that the heat transfer coefficient and pressure loss of the cooling side of the radiator can be obtained within a certain error range by numerical simulation of the radiator unit, and the JF factor of the fin of the airfoil is slightly higher than that of the flat tube fin structure. When the flow rate reaches 12m/s, the evaluation factor of JF is about 15.97 higher than that of NACA0018. Compared with NACA0018, NACA0021 has higher heat transfer coefficient and pressure loss, and should be selected according to the relative thickness.
【作者单位】: 华中科技大学能源与动力工程学院;华北理工大学机械工程学院;吉林大学机械科学与工程学院;
【基金】:湖北省技术创新专项基金资助项目(2016AAA045) 国家科技支撑计划资助项目(2013BAF07B04)
【分类号】:TU603;TK172
【参考文献】
相关期刊论文 前7条
1 刘佳鑫;蒋炎坤;秦四成;刘成强;;基于CFD与ε-NTU法的工程车辆散热性能预估[J];华中科技大学学报(自然科学版);2016年08期
2 顾程鹏;刘佳鑫;秦四成;;动力舱不同出口特征下车辆散热模块性能分析[J];筑路机械与施工机械化;2015年07期
3 刘佳鑫;秦四成;徐振元;张奥;习羽;张学林;;虚拟风洞下的车辆散热器模块性能改进[J];吉林大学学报(工学版);2014年02期
4 刘佳鑫;秦四成;徐振元;张奥;习羽;张学林;;工程车辆散热器模块散热性能数值仿真[J];西南交通大学学报;2012年04期
5 刘佳鑫;秦四成;徐振元;张奥;习羽;张学林;;基于CFD仿真的车辆散热器模块传热性能对比分析[J];华南理工大学学报(自然科学版);2012年05期
6 肖宝兰;俞小莉;韩松;陆国栋;夏立峰;;散热带翅片参数对车用水箱散热器流动传热性能的影响[J];内燃机工程;2010年03期
7 王飞;秦四成;赵克利;;装载机管片式散热器流动与传热特性数值分析[J];吉林大学学报(工学版);2009年S1期
相关博士学位论文 前1条
1 刘佳鑫;工程机械散热模块传热性能研究[D];吉林大学;2013年
【共引文献】
相关期刊论文 前1条
1 许子杰;任光亮;;基于马氏距离的相位噪声抑制算法[J];华中科技大学学报(自然科学版);2017年04期
,本文编号:2293351
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2293351.html