当前位置:主页 > 科技论文 > 建筑工程论文 >

不同类型多维地震动作用下高层建筑结构的地震响应分析

发布时间:2018-10-26 13:23
【摘要】:高层建筑是我国城市中办公、住宅等建筑的主要结构形式,其抗震安全性对于保护人民生命财产的安全具有重要的意义。本文在系统概述我国高层建筑结构发展、结构抗震分析方法以及多维地震动研究等方面的基础上,开展了不同类型多维地震动输入下的高层建筑结构的地震响应分析,主要工作如下:(1)根据不同类型地震波的选取依据,从世界地震记录数据库中选取了相应场地类别的普通远场地震波、脉冲型近断层地震波和无脉冲型近断层地震波等三种不同类型的地震动实测记录,通过比较三种类型地震波的速度时程曲线、傅里叶幅值谱和反应谱曲线,对比分析了不同类型地震动的工程特性。分析表明:脉冲型地震波中存在显著的速度脉冲;近断层地震波竖向分量在高频段比远场地震波丰富;普通远场和脉冲型地震波在周期较长部分较丰富,加速度放大系数随周期的增大衰减较慢,而无脉冲型地震波能量主要集中在高频段;远场地震波由于竖向分量衰减更快,在标准加速度反应谱曲线中竖向分量明显小于两水平分量,说明当震中距较小时,应重视竖向分量可能对结构动力响应的不利影响。(2)依据合成转动分量的基本理论计算了不同类型地震动的转动分量,并分析其工程特性。分析表明:与平动分量类似,脉冲型近断层地震波的转动分量也存在比较明显的速度脉冲;而远场和其他近断层地震波的脉冲现象则不明显;同一个地震波的两摇摆分量的傅里叶幅值谱曲线较类似,而与扭转分量的差别较大;摇摆分量的频率成分更集中于高频段,卓越频率更高;相比于平动分量,转动分量在高频范围内的成分更丰富,频带较宽,随频率的增大衰减较缓慢;摇摆分量的角加速度放大系数大于扭转分量,扭转分量的卓越周期更高,角加速度放大系数的平台段更明显。(3)建立了高层建筑结构的有限元分析模型,以不同类型多维地震动为输入,计算了不同工况下结构的动力时程响应,并总结其影响规律。计算结果表明:转动分量引起结构的顶层加速度和位移反应较大;转动分量引起的结构加速度反应的频率较高;相对于普通远场地震波,近断层地震动转动分量对结构位移响应的影响更大;脉冲型地震波引起的结构顶点位移反应比另两种类型地震波的大很多;脉冲型地震波引起的结构角柱柱端剪力和弯矩响应峰值比普通远场和普通近断层地震波的大;普通远场地震波转动分量作用时,柱端剪力和弯矩略有减小,而近断层地震波输入时转动分量的影响较大;脉冲型地震波作用时的结构底层柱内力远大于另外两种类型的地震波;高层建筑结构地震响应与地震波的类型以及输入的不同分量都有较大关系,为确保高层建筑结构的抗震安全性,有必要考虑两者对结构地震作用的不利影响。
[Abstract]:High-rise building is the main structural form of office and residential buildings in our country, and its seismic safety is of great significance to protect the safety of people's life and property. On the basis of a systematic overview of the development of high-rise building structures in China, the seismic analysis methods of structures and the study of multi-dimensional ground motion, the seismic response analysis of high-rise building structures with different types of multi-dimensional ground motion input is carried out in this paper. The main works are as follows: (1) based on the selection of different types of seismic waves, the ordinary far-field seismic waves of corresponding site types are selected from the world seismic record database. Three different types of ground motion measurements, such as pulse near fault seismic wave and non pulse near fault ground seismic wave, were recorded. By comparing the velocity history curve, Fourier amplitude spectrum and response spectrum curve of three kinds of seismic waves, The engineering characteristics of different types of ground motions are compared and analyzed. The analysis shows that there are significant velocity pulses in the pulsed seismic waves and that the vertical components of the near-fault seismic waves are more abundant than those of the far-field seismic waves in the high frequency range. The ordinary far field and pulse seismic wave are abundant in the long period, and the acceleration magnification coefficient attenuates slowly with the increase of the period, while the energy of the non pulse type seismic wave is mainly concentrated in the high frequency range. The attenuation of far-field seismic wave due to vertical component is faster, and the vertical component in the standard acceleration response curve is obviously smaller than that of two horizontal components, which indicates that when the epicentral distance is small, Attention should be paid to the possible adverse effects of vertical components on the dynamic response of structures. (2) based on the basic theory of composite rotational components, the rotational components of different types of ground motions are calculated and their engineering characteristics are analyzed. The analysis shows that, similar to the translational component, the rotational component of the pulsed near-fault seismic wave also has obvious velocity pulse, but the pulse phenomenon of the far-field and other near-fault seismic waves is not obvious. The Fourier amplitude spectrum curve of the two rocking components of the same seismic wave is similar to that of the torsional component, and the frequency component of the rocking component is more concentrated in the high frequency band and the superior frequency is higher. Compared with the translational component, the rotational component is more abundant in the high frequency range, the frequency band is wider, and the attenuation is slower with the increase of the frequency. The angular acceleration magnification factor of the rocking component is larger than that of the torsional component, the excellent period of the torsional component is higher, and the platform segment of the angular acceleration magnification factor is more obvious. (3) the finite element analysis model of high-rise building structure is established. Taking different types of multi-dimensional ground motion as input, the dynamic time-history response of structures under different working conditions is calculated and its influence law is summarized. The results show that the top acceleration and displacement response of the structure caused by the rotational component is larger, the frequency of the structural acceleration response caused by the rotational component is higher. Compared with the conventional far-field seismic waves, the rotational components of near-fault ground earthquakes have a greater effect on the structural displacement response, and the structural vertex displacement response caused by the impulsive seismic waves is much larger than that of the other two types of seismic waves. The peak value of shear force and moment response at the end of corner column caused by impulse seismic wave is larger than that of normal far field and common near fault ground seismic wave. The shear force and bending moment at the end of the column decrease slightly under the action of the rotational component of the ordinary far-field seismic wave, but the rotational component has a great effect on the input of the near-fault seismic wave. The internal force of the bottom column of the structure is much larger than that of the other two types of seismic waves. The seismic response of high-rise building structure is closely related to the type of seismic wave and the different input components. In order to ensure the seismic safety of high-rise building structure, it is necessary to consider their adverse effects on the seismic action of the structure.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU973.31

【参考文献】

相关期刊论文 前10条

1 姚振亚;金国芳;;地震动摇摆分量的合成[J];同济大学学报(自然科学版);2016年11期

2 张杰;李宏男;王立长;;大跨非对称空间结构多维地震动反应研究[J];地震工程与工程振动;2015年03期

3 魏文晖;薛广文;张迪;喻梦;;基于小波分析的地震动转动分量研究[J];岩土工程学报;2015年07期

4 魏文晖;张迪;喻梦;吴其伟;;带悬吊质量结构的多维地震反应[J];哈尔滨工业大学学报;2014年04期

5 魏文晖;王安阳;胡梦菲;吴其伟;;水平-摇摆地震动下具有悬吊质量结构反应分析[J];华中科技大学学报(自然科学版);2014年04期

6 楼梦麟;杨明珏;;地震动摆动分量对高层建筑结构的影响[J];结构工程师;2014年01期

7 彭利英;赵世伟;陈伯望;;场地类型等对汶川地震近场区域扭转反应谱平台值的影响[J];中南大学学报(自然科学版);2013年11期

8 董兴朋;彭愿;吴阿丹;王鹏伟;;日本和台湾近场区地面旋转运动研究[J];地球物理学进展;2013年05期

9 赵世伟;罗奇峰;;集集地震与汶川地震、美国西部地震的近场区视波速比较[J];振动与冲击;2013年14期

10 ;Torsional phenomena in 2008 great Wenchuan earthquake[J];Earthquake Science;2010年01期

相关博士学位论文 前1条

1 刘跃伟;转动地震动与结构抗扭设计[D];大连理工大学;2011年

相关硕士学位论文 前2条

1 乔敏源;近断层地震动作用下桥梁地震响应研究[D];北京交通大学;2013年

2 李旭鹏;地震动扭转分量的确定方法及工程特性研究[D];重庆大学;2012年



本文编号:2295857

资料下载
论文发表

本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2295857.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户28703***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com