当前位置:主页 > 科技论文 > 建筑工程论文 >

玄武岩纤维复合筋材在基坑支护桩中的应用

发布时间:2018-11-06 20:54
【摘要】:玄武岩纤维复合材料(BFRP)具有抗拉强度高、耐腐蚀性和化学稳定性、高热稳定性和高绝缘性、成本低廉等优点。同时BFRP筋的热膨胀系数与混凝土相近,确保了混凝土与筋材的同步变形。在基坑支护工程中常采用的支护桩,若通过研究提出BFRP支护桩设计理论,用BFRP筋替代其中部分或全部钢筋,充分发挥其经济及技术优势,应用前景将十分广泛。论文通过室内试验,研究了BFRP筋与混凝土之间的粘结性能,获得了BFRP筋混凝土结构设计的重要参数。通过类比GFRP筋的混凝土结构设计方法初步得出BFRP筋混凝土结构设计方法。对BFRP筋混凝土圆形截面正截面受弯构件和板件进行了室内试验,通过不同的配筋方式和配筋率对构件的承载力和变形性能进行测试,并运用数值模拟对室内试验结果进行了验证。最后综合试验数据对BFRP筋材混凝土构件的设计方法进行了修正。对实际工程中BFRP筋混凝土支护桩进行了配筋设计,并进行了桩身变形及主筋受力的现场监测,验证了BFRP筋混凝土支护桩的实用性及有效性。论文研究表明,BFRP筋材与混凝土的粘结性能良好,粘接强度范围约14~29MPa。采用了2种不同直径的BFRP筋材和3种配筋率进行BFRP桩室内试验,结果表明BFRP桩承载能力随配筋率的提高而提高,且当筋材直径相同时配筋率越高构件承载力越高,当配筋率相同时筋材直径越小构件承载力越高。BFRP混凝土板采用了 4种不同直径的BFRP筋材和3种配筋间距,结果表明BFRP混凝土板承载力随配筋率的增大而提高,但配筋率的提升并没有使承载力有明显提升。数值模拟结果与试验结果吻合较好,内部筋材的受力分布与预期相符合。利用试验和数值分析结果对BFRP混凝土构件承载力计算公式进行了修正,得出了公式的调整系数β为2.5。对比实际工程中BFRP筋混凝土支护桩和钢筋混凝土支护桩的变形和应力监测结果,BFRP筋混凝土支护桩变形稍大于钢筋混凝土桩,且主筋受力稍小,但结构整体稳定,达到了支护效果,证实了BFRP筋应用于基坑支护桩的安全性和可靠性。论文研究提出了 BFRP支护桩设计方法及设计参数,通过工程实例验证了BFRP支护桩的实用性,建议在更多岩土工程中推广应用。
[Abstract]:Basalt fiber composite (BFRP) has the advantages of high tensile strength, corrosion resistance and chemical stability, high thermal stability, high insulation and low cost. At the same time, the thermal expansion coefficient of BFRP reinforcement is close to that of concrete, which ensures the synchronous deformation of concrete and steel bar. If the design theory of BFRP supporting pile is put forward and some or all of the reinforcing bars are replaced by BFRP bars, the application prospect will be very extensive if the supporting pile which is often used in foundation pit support works takes full play of its economic and technical advantages. In this paper, the bond behavior between BFRP bars and concrete is studied through laboratory tests, and the important design parameters of concrete structures with BFRP tendons are obtained. The design method of BFRP reinforced concrete structure is preliminarily obtained by analogy with the concrete structure design method of GFRP bars. In this paper, the flexural members and plates with circular section of BFRP reinforced concrete are tested in laboratory, and the bearing capacity and deformation performance of the members are tested by different reinforcement methods and reinforcement ratio. The results of indoor tests are verified by numerical simulation. Finally, the design method of BFRP reinforced concrete members is modified by synthesizing test data. The reinforcement design of concrete supporting pile with BFRP reinforcement in actual engineering is carried out, and the deformation of pile body and the stress of main reinforcement are monitored on the spot, which verifies the practicability and validity of concrete supporting pile with BFRP reinforcement. The results show that the bond strength of BFRP bar and concrete is good, and the bonding strength range is about 1429MPa. Two kinds of BFRP bars with different diameters and three ratios of reinforcement were used to carry out the indoor test of BFRP pile. The results show that the bearing capacity of BFRP pile increases with the increase of reinforcement ratio, and the higher the reinforcement ratio is, the higher the bearing capacity of the members is when the diameter of the reinforcement is the same. When the reinforcement ratio is the same, the bearing capacity of BFRP concrete slab with smaller diameter is higher. Four kinds of BFRP bars with different diameters and three kinds of reinforcement spacing are used in BFRP concrete slab. The results show that the bearing capacity of BFRP concrete slab increases with the increase of reinforcement ratio. However, the reinforcement ratio does not increase the bearing capacity. The numerical simulation results are in good agreement with the experimental results. The formula for calculating the bearing capacity of BFRP concrete members is modified by using the results of test and numerical analysis, and the adjustment coefficient 尾 of the formula is obtained to be 2.5. Compared with the results of deformation and stress monitoring of BFRP reinforced concrete pile and reinforced concrete supporting pile in actual engineering, the deformation of BFRP reinforced concrete supporting pile is slightly larger than that of reinforced concrete pile, and the stress of the main reinforcement is slightly small, but the structure is stable as a whole. The safety and reliability of BFRP reinforcement applied in foundation pit supporting pile are confirmed. The design method and design parameters of BFRP supporting pile are studied and put forward in this paper. The practicability of BFRP supporting pile is verified by an engineering example and it is suggested that it should be popularized and applied in more geotechnical engineering.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU753.3

【参考文献】

相关期刊论文 前10条

1 张金柱;庞振勇;沈洪;;GFRP筋混凝土圆截面受弯承载力计算方法[J];地下空间与工程学报;2013年06期

2 毕巧巍;汪辉;王清湘;;玄武岩纤维筋与高强纤维混凝土粘结性能及本构模型研究[J];华东公路;2011年05期

3 霍宝荣;张向东;;BFRP筋的力学性能试验[J];沈阳建筑大学学报(自然科学版);2011年04期

4 林锋;江世永;李柄宏;;混凝土梁中BFRP螺旋箍筋抗剪性能试验研究[J];施工技术;2011年06期

5 朱大宇;顾浩声;陈传灿;;GFRP筋地下连续墙混凝土板受弯性能试验研究及有限元分析[J];建筑结构学报;2011年02期

6 甘怡;江世永;飞渭;石钱华;胡显奇;;先张预应力BFRP筋混凝土梁受弯性能试验研究[J];后勤工程学院学报;2011年01期

7 李炳宏;江世永;石钱华;胡显奇;林锋;李迎涛;;BFRP连续螺旋箍筋混凝土梁抗剪性能试验研究[J];后勤工程学院学报;2011年01期

8 顾兴宇;沈新;陆家颖;;玄武岩纤维筋拉伸力学性能试验研究[J];西南交通大学学报;2010年06期

9 赵庆新;董进秋;潘慧敏;郝圣旺;;玄武岩纤维增韧混凝土冲击性能[J];复合材料学报;2010年06期

10 顾兴宇;沈新;李海涛;;高模量玄武岩纤维-钢丝复合筋的力学性能[J];长沙理工大学学报(自然科学版);2010年03期

相关会议论文 前1条

1 吴刚;吴智深;胡显奇;蒋剑彪;;玄武岩纤维在土木工程中的应用研究现状及进展[A];第五届全国FRP学术交流会论文集[C];2007年

相关硕士学位论文 前5条

1 徐岱;GFRP筋混凝土圆截面构件抗弯性能研究[D];南京林业大学;2014年

2 李宏兵;BFRP加固钢筋混凝土梁受弯性能的研究[D];重庆大学;2012年

3 叶焕军;玄武岩纤维混凝土梁受弯性能研究[D];东北林业大学;2011年

4 李娟;纤维对GFRP筋与自密实混凝土基体粘结性能影响[D];大连理工大学;2009年

5 邹永威;玻璃纤维(GFRP)筋在盾构端头井围护桩中的应用研究[D];西南交通大学;2008年



本文编号:2315444

资料下载
论文发表

本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2315444.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b4c44***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com