臭氧—活性炭工艺中溴酸盐的生成控制研究
[Abstract]:The water supply project of the east section of the South-to-North Water Transfer Project is of great significance to the guarantee of the industrial and agricultural production and the people's stability in Shandong Province. With the deterioration of water quality and the increasing demand of people for water quality, the process of ozone is more and more applied to the water treatment of water plant, and the problem of the by-products of bromate disinfection is becoming more and more serious. In order to study the effect of the generation risk of the ozone process bromate during the actual operation of the water works in the east section of the South-to-North Water Transfer Project, the effect of the raw water quality in the process on the generation of bromate, the pre-oxidation of potassium permanganate and ammonia nitrogen, The control effect of the addition of ozone on the generation of bromate and the removal of bromate by activated carbon. In this paper, the following contents are studied:1. The water samples of the Nansihu Lake are mixed with the water sample of Dongping Lake, the water sample of Xicheng Reservoir, the water sample of Shuangwang City and the water sample of the Yangtze River, and the water quality of the mixed water sample is improved by the coagulation, and the water samples before and after the coagulation are respectively subjected to ozone oxidation treatment. The dosage of the coagulant is 24 mg/ L, the dosage of the ozone is 0-10mg/ L, and the volume of the test water sample is 2L. It was found that when the amount of bromate produced before and after coagulation was 10. m u.g/ L, the dosage of ozone was between 8 and 10 mg/ L. And the amount of bromate in the water sample after the coagulation is increased when the amount of the ozone is the same. After the mixed water sample has been treated with ozone, the amount of DOC and ammonia nitrogen in most of the water sample is increased, and the UV _ (254) and turbidity decrease with the increase of the amount of ozone. The concentration of the bromine ions, the concentration of the ammonia nitrogen, the concentration of the organic matters, the pH, the concentration of the hydrogen peroxide and the pre-oxidation process and the ozone adding method of the ozone oxidation treatment are respectively regulated in the water sample. It can be found that: (1) The ozone concentration in the raw water is obviously higher than that of pure water due to the action of the organic matter and the like; (2) the ozone dosage is not changed, the higher the bromine ion concentration in the water sample, and the larger the bromate production amount. The dosage of ozone is 5 mg/ L, and when the concentration of bromine ions is increased from 250. m/ L to 450. m u.g/ L, the generation of bromate is increased by 40%; (3) because of the high removal rate of the ozone process to the UV _ (254), the removal effect on the DOC is poor, and the SUVA value of the discharged water after the oxidation of the raw water is reduced. The lower the value of SUVA in the water sample, the more bromate production, when the dosage of ozone is 5 mg/ L, the value of SUVA is reduced by 10%, and the generation of bromate is increased by 61%. (4) The higher the dosage of ozone, the higher the pH, the greater the production of bromate. The dosage of ozone is 5 mg/ L, and when the pH is reduced from 8.5 to 7.5, the generation of bromate is reduced by 32%. (5) hydrogen peroxide can effectively inhibit the generation of bromate. When the dosage of ozone is 5 mg/ L, different amounts of hydrogen peroxide are added to the raw water, and the generation of bromate is reduced by 20-100%, respectively. (6) the pre-oxidation of potassium permanganate can inhibit the generation of bromate in the ozone process, and the ammonia nitrogen can increase the inhibition of the preoxidation of the potassium permanganate. The dosage of ozone is 8 mg/ L, and when the concentration of potassium permanganate/ ammonia nitrogen is 1 mg/ L, the inhibition rate of bromate is close to 68% as compared with the water sample which is not pre-oxidized. The concentration of potassium permanganate was 1 mg/ L, and when the concentration of ammonia nitrogen increased from 0.6 mg/ L to 1 mg/ L, the inhibition rate of bromate increased by 54%. (7) The generation of bromate can be effectively inhibited by the method of multi-point addition of ozone. When the dosage of ozone is 8 mg/ L, the inhibition rate of bromate is about 76% at two points, and the inhibition rate of the three-point addition of bromate can reach more than 95%. And the higher the total ozone dosage, the more obvious the rate of inhibition of bromate formation, and 3, using the activated carbon column to explore the continuous adsorption of the activated carbon to the bromate. At the same time, the adsorption effect of activated carbon on bromate by both ultrasonic and microwave was explored. The results showed that: (1) The retention time of activated carbon column and the concentration of bromate were positively correlated with the removal rate, and under the condition of continuous operation, the activated carbon can effectively remove bromate, but the removal effect after a certain period of time is obviously reduced. The removal rate of bromate after 8 days of continuous operation of activated carbon column was reduced until close to zero. (2) There is a competitive relationship between the co-existing nitrate ion and the bromate when the activated carbon adsorbs the bromate. When the concentration of bromate was 200 & mu; g/ L and the concentration of nitrate was 20-60 mg/ L, the removal rate of bromate was reduced by about 30%. And (3) after the saturated active carbon is regenerated, the ability of the saturated active carbon to adsorb the bromate can be effectively recovered. The effect of removing the bromate by the microwave regenerated carbon can reach 80% of the new carbon. The ultrasonic regenerated carbon can only reach about 10% of the new carbon.
【学位授予单位】:山东建筑大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU991.2
【相似文献】
相关期刊论文 前10条
1 李宜革;;离子色谱法测定饮水中的溴酸盐[J];科技创新导报;2008年15期
2 周荣振;陈咏梅;李天玉;万平玉;刘永康;杨扬;;新型复合滤料对饮用水中溴酸盐的降解效果研究[J];中国给水排水;2008年11期
3 臧道德,童俊;柱后反应-离子色谱法测定饮用水中的溴酸盐[J];净水技术;2005年05期
4 臧道德;童俊;冯菊丽;陈国光;刘肖;牟世芬;;淋洗液在线发生离子色谱法测定水中的溴酸盐[J];中国给水排水;2006年18期
5 齐剑英;陈永亨;常向阳;;离子色谱法测定饮用水中的痕量溴酸盐[J];净水技术;2007年05期
6 裴义山;杨敏;郭召海;张昱;于建伟;张君枝;张金松;;含溴水源水臭氧处理时溴酸盐的产生与控制[J];环境科学学报;2007年11期
7 尹军;张小雨;刘志生;李娜;张居奎;;含溴矿泉水臭氧化过程中溴酸盐的生成及控制[J];供水技术;2008年06期
8 童俊;臧道德;陈国光;冯菊丽;;关于瓶装水水质标准中溴酸盐离子的探讨[J];净水技术;2009年01期
9 鲁金凤;张勇;王艺;钱敏蕾;王冬;倪磊;;溴酸盐的形成机制与控制方法研究进展[J];水处理技术;2010年11期
10 贾瑞宝;宋武昌;杨晓亮;孙韶华;;臭氧氧化工艺溴酸盐控制中试研究[J];给水排水;2010年12期
相关会议论文 前10条
1 邓灼;方晶云;商启;张相如;;四种前处理技术对臭氧消毒过程中溴酸盐形成的控制[A];2011中国环境科学学会学术年会论文集(第一卷)[C];2011年
2 俞潇婷;王琳;张仁熙;侯惠奇;;化学还原法去除饮用水中溴酸盐的实验研究[A];上海市化学化工学会2010年度学术年会论文集[C];2010年
3 贾燕南;刘文朝;胡孟;邬晓梅;;实际水体采用臭氧消毒时溴酸盐生成规律的初步研究[A];现代节水高效农业与生态灌区建设(下)[C];2010年
4 杨振宇;邓晓军;;IC-ICP-MS联用检测面粉及其制品中的溴酸盐[A];第11届全国离子色谱学术报告会论文集[C];2006年
5 俞潇婷;张仁熙;侯惠奇;;水溶液中溴酸根离子形成机制研究[A];第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集[C];2011年
6 俞潇婷;王琳;张仁熙;侯惠奇;;活性炭吸附法去除饮用水中溴酸根离子的研究[A];上海市化学化工学会2010年度学术年会论文集[C];2010年
7 滕根发;虞雄华;;小麦粉中溴酸盐的测定[A];第11届全国离子色谱学术报告会论文集[C];2006年
8 徐飞飞;郭亚肖;李海斌;邓志芬;刘军伟;齐若冰;娄静;张书胜;;苯丙氨酸杯[4]芳烃键合毛细管电泳法测定自来水中的BrO_3~-[A];全国生物医药色谱及相关技术学术交流会(2012)会议手册[C];2012年
9 徐凤丹;;饮用水臭氧消毒副产物——溴酸盐的致癌性[A];中国科协第十四届年会第十七分会场环境危害与健康防护研讨会论文集[C];2012年
10 安东各;孙宇;许莉;;离子色谱法测定挂面中的溴酸盐含量[A];第十届中国科协年会论文集(二)[C];2008年
相关重要报纸文章 前10条
1 沙文婧;矿泉水溴酸盐含量要符合标准[N];济南日报;2008年
2 岳粹景;矿泉水标准忽略溴酸盐[N];民营经济报;2008年
3 刘俊;拟限溴酸盐浓度[N];广州日报;2008年
4 实习生 周慧邋记者 许琦敏;“矿泉水溴酸盐致癌”言过其实[N];文汇报;2008年
5 刘伊婷;饮用水业关注溴酸盐[N];中国质量报;2008年
6 胡笑红;饮用矿泉水将对溴酸盐设限[N];西部时报;2008年
7 本报记者 吴涛邋实习生 吕俊;矿泉水设定溴酸盐“门槛”[N];扬州日报;2008年
8 本报记者 肖立翠;矿泉水溴酸盐浓度将受限制[N];四川日报;2008年
9 早报记者 吴洁瑾 肖蓓;上海正研究措施“紧盯”溴酸盐[N];东方早报;2009年
10 南方;矿泉水企业为溴酸盐而头痛[N];中国包装报;2009年
相关博士学位论文 前3条
1 陈欢;液相催化加氢还原水中溴酸盐和六价铬的研究[D];南京大学;2011年
2 钟宇;化学和电化学-微生物偶联法降解溴酸盐的研究[D];湖南大学;2016年
3 朱琦;饮用水处理过程中溴酸盐的生成特性及优化控制研究[D];哈尔滨工业大学;2012年
相关硕士学位论文 前10条
1 蔡忆;介质阻挡放电—发射光谱检测水样中溴化物和溴酸盐[D];东北大学;2014年
2 王雪燕;有氧条件下钠米铁/活性炭去除水中溴酸盐的研究[D];浙江大学;2016年
3 陈仁;大孔阴离子交换树脂去除溴酸盐的研究[D];湖南大学;2015年
4 黄大凯;电化学修饰电极用于溴酸盐、碘酸盐和氨气的灵敏检测[D];长沙理工大学;2015年
5 王逸群;臭氧—活性炭工艺中溴酸盐的生成控制研究[D];山东建筑大学;2017年
6 刘亚秋;氨抑制臭氧化副产物溴酸盐的研究[D];哈尔滨工业大学;2010年
7 董洋;活性炭负载贵金属催化去除饮用水中溴酸盐的初步研究[D];哈尔滨工业大学;2010年
8 喻灵敏;贵金属改性二氧化钛光催化去除饮用水中溴酸盐[D];哈尔滨工业大学;2013年
9 张鹏;两种载钯介孔材料加氢还原去除水中溴酸盐的研究[D];南京理工大学;2014年
10 于明学;饮用水臭氧活性炭处理工艺中溴酸盐的生成与去除研究[D];哈尔滨工业大学;2009年
,本文编号:2454190
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2454190.html