当前位置:主页 > 科技论文 > 建筑工程论文 >

多模态过程的全自动离线模态识别方法

发布时间:2017-03-10 14:00

  本文关键词:模态识别,,由笔耕文化传播整理发布。


全文: (12975 KB)   (1 KB) 
输出: BibTeX | EndNote (RIS)      

摘要 多模态是复杂工业生产过程的普遍特性.不同模态具有不同的过程特性,需要建立不同的模型,因此离线建模数据的模态划分与识别是整个多模态过程建模的关键问题之一.目前,常用的聚类算法需要对其结果进行人工分析和后续处理,无法真正实现多模态过程的全自动模态识别.因此,本文提出一种全自动的多模态过程离线模态识别方法.首先通过宽度为H的大切割窗口对数据进行切割,利用改进的K-means聚类算法对窗口单元进行聚类;根据聚类结果,对稳定模态淹没现象进行处理,得到模态的初步划分结果;最终,利用小滑动窗口L,对稳定模态及过渡模态交接区域进行细划分,准确定位稳定模态与过渡模态的分割点.算法实现了多模态过程的全自动离线识别,并给出合理有效的识别结果.仿真分析表明此方法能够实现模态的自动识别,且识别结果准确.

服务

E-mail Alert

RSS

收稿日期: 2015-03-04     

基金资助:国家自然科学基金(61533007,61374146,61403072),流程工业综合自动化国家重点实验室基础科研业务费(2013ZCX02-04),中央高校基本科研专项资金(N140404020),华东理工大学探索研究专项基金(22A201514050)资助

通讯作者: 张淑美东北大学博士研究生.主要研究方向为复杂工业过程监测与故障诊断.本文通信作者.E-mail:aries816@163.com     E-mail: aries816@163.com

作者简介: 王福利东北大学教授.主要研究方向为复杂工业过程建模、控制与优化,工业过程监测、质量预报与故障诊断.E-mail:wangfuli@ise.neu.edu.cn;谭帅华东理工大学讲师.主要研究方向为复杂工业过程建模,过程监测与故障诊断.E-mail:tanshuai@ecust.edu.cn;王姝东北大学副教授.主要研究方向为复杂工业过程建模,过程监测与故障诊断.E-mail:wangshu@ise.neu.edu.cn

引用本文:   

张淑美, 王福利, 谭帅, 王姝. 多模态过程的全自动离线模态识别方法. 自动化学报, 2016, 42(1): 60-80.
ZHANG Shu-Mei, WANG Fu-Li, TAN Shuai, WANG Shu. A Fully Automatic Offline Mode Identification Method for Multi-mode Processes. Acta Automatica Sinica, 2016, 42(1): 60-80.

链接本文:  

     或     

[1] Tan Shuai. Statistical Modeling and Online Monitoring for Multiple Mode Processes[Ph.D. dissertation], Northeastern University, China, 2012.(谭帅. 多模态过程统计建模及在线监测方法研究[博士学位论文], 东北大学, 中国, 2012.)
[2] Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE Journal, 2008, 54(7):1811-1829
[3] Wang Jing, Hu Yi, Shi Hong-Bo. Fault detection for batch processes based on Gaussian mixture model. Acta Automatica Sinica, 2015, 41(5):899-905(王静, 胡益, 侍洪波. 基于GMM的间歇过程故障检测. 自动化学报, 2015, 41(5):899-905)
[4] Xie X, Shi H B. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models. Industrial and Engineering Chemistry Research, 2012, 51(15):5497-5505
[5] Ge Z Q, Gao F R, Song Z H. Mixture probabilistic PCR model for soft sensing of multimode processes. Chemometrics and Intelligent Laboratory Systems, 2011, 105(1):91-105
[6] Ge Z Q. Mixture Bayesian regularization of PCR model and soft sensing application. IEEE Transactions on Industrial Electronics, 2015, 62(7):4336-4343
[7] Ng Y S, Srinivasan R. An adjoined multi-model approach for monitoring batch and transient operations. Computers and Chemical Engineering, 2009, 33(4):887-902
[8] Lu N Y, Gao F R, Wang F L. Sub-PCA modeling and on-line monitoring strategy for batch processes. AIChE Journal, 2004, 50(1):255-259
[9] Zhao C H, Wang F L, Lu N Y, Jia M X. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes. Journal of Process Control, 2007, 17(9):728-741
[10] Zhao C H, Zhang W D. Reconstruction based fault diagnosis using concurrent phase partition and analysis of relative changes for multiphase batch processes with limited fault batches. Chemometrics and Intelligent Laboratory Systems, 2014, 130:135-150
[11] Tang X C, Li Y, Xie Z. Phase division and process monitoring for multiphase batch processes with transitions. Chemometrics and Intelligent Laboratory Systems, 2015, 145:72-83
[12] Wang F L, Tan S, Peng J, Chang Y Q. Process monitoring based on mode identification for multi-mode process with transitions. Chemometrics and Intelligent Laboratory Systems, 2012, 110(1):144-155
[13] Tan S, Wang F L, Peng J, Chang Y Q, Wang S. Multimode process monitoring based on mode identification. Industrial and Engineering Chemistry Research, 2012, 51(1):374-388
[14] Zhang Y W, Zhang H L. Fault detection for time-varying processes. IEEE Transactions on Control Systems Technology, 2014, 22(4):1527-1535
[15] Zhang Y W, Li S. Modeling and monitoring between-mode transition of multimodes processes. IEEE Transactions on Industrial Informatics, 2013, 9(4):2248-2255
[16] Alguwaizani A. Degeneracy on K-means clustering. Electronic Notes in Discrete Mathematics, 2012, 39:13-20
[17] Pan Tian-Hong, Xue Zhen-Kuang, Li Shao-Yuan. An online multi-model identification algorithm based on subtractive clustering. Acta Automatica Sinica, 2009, 35(2):220-224(潘天红, 薛振框, 李少远. 基于减法聚类的多模型在线辨识算法. 自动化学报, 2009, 35(2):220-224)
[18] Chiu S L. Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems:Applications in Engineering and Technology, 1994, 2(3):267-278
[19] Jain A K, Murty M N, Flynn P J. Data clustering:a review. ACM Computing Surveys, 1999, 31(3):264-323
[20] Wang Hui-Wen. Partial Least-Squares Regression-Method and Applications. Beijing, China:National Defence Industry Press, 1999.(王惠文. 偏最小二乘回归方法及其应用. 北京:国防工业出版社, 1999.)
[21] Qian Peng-Jiang, Wang Shi-Tong, Deng Zhao-Hong. Fast kernel density estimate theorem and scaling up graph-based relaxed clustering method. Acta Automatica Sinica, 2011, 37(12):1422-1434(钱鹏江, 王士同, 邓赵红. 快速核密度估计定理和大规模图论松弛聚类方法. 自动化学报, 2011, 37(12):1422-1434)
[22] Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems. Beijing, China:China Machine Press, 2003.(蒋浩天, 拉塞尔 E L, 布拉茨 R D. 工业系统的故障检测与诊断. 北京:机械工业出版社, 2003.)
[23] Larsson T, Hestetun K, Hovland E, Skogestad S. Self-optimizing control of a large-scale plant:the Tennessee Eastman process. Industrial and Engineering Chemistry Research, 2001, 40(22):4889-4901

没有找到本文相关文献


  本文关键词:模态识别,由笔耕文化传播整理发布。



本文编号:250166

资料下载
论文发表

本文链接:https://www.wllwen.com/jianzhugongchenglunwen/250166.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户99041***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com