强震作用下支撑钢框架结构的安全裕度分析与设计优化
发布时间:2024-04-08 18:14
地震造成的建筑物倒塌是引起重大人员伤亡的主要原因,对结构进行抗倒塌设计意味着生命的拯救。除自然灾害外,结构倒塌也可能是由疏忽大意或故意破坏造成的。另一方面,只有少数人能够负担得起建筑进行防倒塌设计的昂贵成本。因此,采用经济、实用和有效的方法对结构进行防倒塌设计是十分必要的。地震作用下钢结构的安全储备是可量化的,然而,将其融合到结构设计中仍然是一个亟待解决的问题。本论文尝试进行支撑体系的优化研究,并进一步将安全储备的概念拓展至连续倒塌领域,这个过程提供了理解需求能力比(DCR)自身以及其与结构构件行为状态之间相互关系的全新视角。该研究特别是将安全储备的概念融入到支撑体系这个过程,对钢结构的设计和加固具有重要意义,使得支撑体系由侧向荷载耗能构件的初始角色成为防止结构倒塌的主要结构构件。本论文的研究内容如下:1)分析了对称布置的中心支撑钢框架的地震倒塌安全储备。研究表明,支撑的布置方式和截面形式决定着支撑提高结构安全性的效率。从数值算例来看,最佳的加固方案不能兼得最高的结构安全性和最低的造价,而是在安全性和造价之间取得平衡。结合选取最优加固方案的三个参数来看,在给定结构的最佳加固方案中性能水...
【文章页数】:172 页
【学位级别】:博士
【文章目录】:
Abstract
摘要
Table of Major Symbols and Units
1 Introduction
1.1 Research Background and Significance
1.1.1 Background
1.1.2 Research Significance
1.2 State-of-the-Art for Safety Margin Analysis and Design Optimization of Building Structures
1.2.1 Causes of Structural Collapse
1.2.2 Methods for Assessing Seismic Collapse Capacity
1.2.3 Review of Progressive Collapse
1.2.4 Review of Optimization Design for Bracing Systems
1.2.5 Problem Statement
1.3 Research Topics
2 Seismic Collapse Margin Analysis of Steel Frame Structures with Symmetrically Placed Concentric Braces
2.1 Introduction
2.2 Structural Collapse Resistance
2.3 Collapse Margin Ratio
2.4 Performance Index
2.4.1 Location of Braces
2.4.2 Number of Braces
2.4.3 Optimal Brace Cross Section
2.5 Retrofitting Cost
2.6 Modeling using OpenSees
2.7 Case Study
2.8 Summary
3 Collapse Safety Margin-Based Design Optimization of Steel Structures with Concentrically Braced Frames
3.1 Introduction
3.2 Brace Schemes using Probabilistic Analysis of Multi-Element Removal
3.2.1 Designable Matrix
3.2.2 Matrix brace locations
3.2.3 Matrix Brace Sections
3.3 Optimal Discrete Brace Sections Derived from Base-Shear Method
3.3.1 Overview and Assumptions
3.3.2 Flexure Displacement
3.3.3 Optimal Shear Displacement
3.3.4 Total Optimal Brace Section
3.3.5 Optimal Discrete Brace Section
3.4 Optimal Design of Bracing Systems using Collapse Safety Assessment
3.4.1 Optimization Overview
3.4.2 Collapse Safety Evaluation
3.4.3 Optimal Brace Scheme
3.5 Numerical Examples
3.5.1 Modeling using OpenSees
3.5.2 Building Models
3.5.3 Results and Discussions
3.6 Summary
4 Vertical Collapse Safety Margin Assessment for Steel Frames against Earthquake-Induced Loss of Column
4.1 Introduction
4.2 CMRV Assessment
4.2.1 Important Parameters for Assessing CMRV
4.2.2 Proposed Classification of the Vertical Earthquakes
4.2.3 Performance Analyses of the Archetypes
4.3 CMRV Formulation
4.3.1 Limitation of Data
4.3.2 Nonlinear Regression Equation for the CMR
4.3.3 Validation of the Proposed Formulation
4.4 Estimation of the Minimum CMRV
4.4.1 CMRV,min Based on Reduction of Potential for Progressive Collapse
4.4.2 CMRV,min Based on Beam Deformation States under Column Loss
4.5 Summary
5 Design of Buckling-Restrained Braces in Retrofit of Steel Frames Considering Different V/H Ratios
5.1 Introduction
5.2 Seismic Collapse Assessment of Braced Structures
5.2.1 Structural Collapse under Seismic Loads
5.2.2 Proposed Procedure to Assess Seismic Collapse
5.2.3 Structural Parameters Influencing the Seismic Structural Collapse
5.3 Assessment of Structural Parameters
5.3.1 Effect of the Column Removal on the Structural Strength
5.3.2 Influence of the V/H Ratio on the Structural Vulnerability
5.3.3 Relation of the Beam Length to the Structural Strength
5.3.4 Influence of the Brace Configuration
5.4 Proposed BRB Design against Seismic Structural Collapse
5.4.1 Proposed Design of BRB
5.4.2 Optimal Utilization of the BRB
5.5 Summary
6 Conclusions and Future Work
6.1 Conclusions
6.2 Abstract of Innovation Points
6.3 Future Work
References
Published Papers during PhD Period
Acknowledgement
About the Author
本文编号:3948613
【文章页数】:172 页
【学位级别】:博士
【文章目录】:
Abstract
摘要
Table of Major Symbols and Units
1 Introduction
1.1 Research Background and Significance
1.1.1 Background
1.1.2 Research Significance
1.2 State-of-the-Art for Safety Margin Analysis and Design Optimization of Building Structures
1.2.1 Causes of Structural Collapse
1.2.2 Methods for Assessing Seismic Collapse Capacity
1.2.3 Review of Progressive Collapse
1.2.4 Review of Optimization Design for Bracing Systems
1.2.5 Problem Statement
1.3 Research Topics
2 Seismic Collapse Margin Analysis of Steel Frame Structures with Symmetrically Placed Concentric Braces
2.1 Introduction
2.2 Structural Collapse Resistance
2.3 Collapse Margin Ratio
2.4 Performance Index
2.4.1 Location of Braces
2.4.2 Number of Braces
2.4.3 Optimal Brace Cross Section
2.5 Retrofitting Cost
2.6 Modeling using OpenSees
2.7 Case Study
2.8 Summary
3 Collapse Safety Margin-Based Design Optimization of Steel Structures with Concentrically Braced Frames
3.1 Introduction
3.2 Brace Schemes using Probabilistic Analysis of Multi-Element Removal
3.2.1 Designable Matrix
3.2.2 Matrix brace locations
3.2.3 Matrix Brace Sections
3.3 Optimal Discrete Brace Sections Derived from Base-Shear Method
3.3.1 Overview and Assumptions
3.3.2 Flexure Displacement
3.3.3 Optimal Shear Displacement
3.3.4 Total Optimal Brace Section
3.3.5 Optimal Discrete Brace Section
3.4 Optimal Design of Bracing Systems using Collapse Safety Assessment
3.4.1 Optimization Overview
3.4.2 Collapse Safety Evaluation
3.4.3 Optimal Brace Scheme
3.5 Numerical Examples
3.5.1 Modeling using OpenSees
3.5.2 Building Models
3.5.3 Results and Discussions
3.6 Summary
4 Vertical Collapse Safety Margin Assessment for Steel Frames against Earthquake-Induced Loss of Column
4.1 Introduction
4.2 CMRV Assessment
4.2.1 Important Parameters for Assessing CMRV
4.2.3 Performance Analyses of the Archetypes
4.3 CMRV Formulation
4.3.1 Limitation of Data
4.3.2 Nonlinear Regression Equation for the CMR
4.3.3 Validation of the Proposed Formulation
4.4 Estimation of the Minimum CMRV
4.4.2 CMRV,min Based on Beam Deformation States under Column Loss
4.5 Summary
5 Design of Buckling-Restrained Braces in Retrofit of Steel Frames Considering Different V/H Ratios
5.1 Introduction
5.2 Seismic Collapse Assessment of Braced Structures
5.2.1 Structural Collapse under Seismic Loads
5.2.2 Proposed Procedure to Assess Seismic Collapse
5.2.3 Structural Parameters Influencing the Seismic Structural Collapse
5.3 Assessment of Structural Parameters
5.3.1 Effect of the Column Removal on the Structural Strength
5.3.2 Influence of the V/H Ratio on the Structural Vulnerability
5.3.3 Relation of the Beam Length to the Structural Strength
5.3.4 Influence of the Brace Configuration
5.4 Proposed BRB Design against Seismic Structural Collapse
5.4.1 Proposed Design of BRB
5.4.2 Optimal Utilization of the BRB
5.5 Summary
6 Conclusions and Future Work
6.1 Conclusions
6.2 Abstract of Innovation Points
6.3 Future Work
References
Published Papers during PhD Period
Acknowledgement
About the Author
本文编号:3948613
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/3948613.html