基于耦合相似度的矩阵分解推荐方法
本文选题:推荐系统 + 相似度 ; 参考:《计算机科学》2016年04期
【摘要】:随着因特网和信息技术的高速发展,信息过载现象越来越严重。推荐系统能够给个人和商家(例如电子商务和零售商)提供个性化的推荐。数据稀疏性和分数预测质量问题被公认为是现存推荐系统中的主要挑战。当前绝大多数推荐系统技术都依赖于协同过滤方法,它主要利用用户-项目评分矩阵来表示用户和项目之间的关系。一些研究利用附加信息来提高推荐准确性,但是,绝大多数现存的引入项目之间关系的方法并不能很好地用于预测和推荐,因为其假设项目属性之间是独立同分布的,而实际上项目(或用户)的属性之间是存在耦合关系的。由此提出了基于属性耦合关系的矩阵分解模型,它能有效地刻画项目之间的耦合相关性,从而更加合理地预测用户对项目的评分。实验结果表明,所提出的模型在热启动和冷启动的推荐准确性方面均优于传统的推荐算法。
[Abstract]:With the rapid development of Internet and information technology, the phenomenon of information overload is becoming more and more serious. Recommendation systems can provide personalized recommendations to individuals and businesses (e. G. E-commerce and retailers). The problem of data sparsity and score prediction quality is recognized as the main challenge in the existing recommendation systems. At present, most recommendation systems rely on collaborative filtering methods, which mainly use the user-item scoring matrix to express the relationship between users and items. Some studies use additional information to improve recommendation accuracy, but the vast majority of existing methods to introduce relationships between items are not well used to predict and recommend because they assume that the attributes of the items are independently and equally distributed. In fact, there is a coupling between the attributes of the project (or user). A matrix decomposition model based on attribute coupling relationship is proposed, which can effectively describe the coupling correlation between items, thus more reasonably predicting the users' scores on the items. The experimental results show that the proposed model is superior to the traditional recommendation algorithm in the accuracy of recommendation for hot start and cold start.
【作者单位】: 辽宁工程技术大学电子与信息工程学院;
【基金】:国家青年科学基金(61003162) 辽宁省高等学校杰出青年学者成长计划(LJQ201303038)资助
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 史加荣;郑秀云;周水生;;矩阵补全算法研究进展[J];计算机科学;2014年04期
2 李聪;骆志刚;;用于鲁棒协同推荐的元信息增强变分贝叶斯矩阵分解模型[J];自动化学报;2011年09期
3 袁运祥;基于矩阵分解的子结构法求解介绍[J];计算机应用通讯;1981年00期
4 张海建;;分布式矩阵分解算法在推荐系统中的研究与应用[J];科技通报;2013年12期
5 何朕,赵文斌,于达仁;摄动矩阵的分解[J];电机与控制学报;2004年03期
6 李华云;;F范数及矩阵分解实例研究[J];现代情报;2008年10期
7 邹理和;;系数矩阵分解二维谱估值[J];信号处理;1985年03期
8 陈伯伦;陈];邹盛荣;徐秀莲;;基于矩阵分解的二分网络社区挖掘算法[J];计算机科学;2014年02期
9 王锋;赵志文;牟盛;;整数提升小波多相矩阵分解系数的快速提取算法[J];中国图象图形学报;2012年03期
10 段华杰;;考虑时间效应的矩阵分解技术在推荐系统中的应用[J];微型电脑应用;2013年03期
相关会议论文 前2条
1 王春江;钱若军;王人鹏;杨联萍;;矩阵分解在张力集成体系模态分析中的应用[A];第九届全国结构工程学术会议论文集第Ⅰ卷[C];2000年
2 王春江;王人鹏;钱若军;王颖;;矩阵分解技术在体系性态综合分析中的初步应用[A];“力学2000”学术大会论文集[C];2000年
相关博士学位论文 前5条
1 李英明;矩阵分解在数据挖掘中的应用[D];浙江大学;2014年
2 赵科科;低秩矩阵分解的正则化方法与应用[D];浙江大学;2012年
3 郭亦鸿;利用穆勒矩阵分解定量测量各向异性介质微观结构[D];清华大学;2014年
4 胡惠轶;基于分解的系统辨识方法研究[D];江南大学;2014年
5 陈根浪;基于社交媒体的推荐技术若干问题研究[D];浙江大学;2012年
相关硕士学位论文 前10条
1 秦晓晖;个性化微博推荐方法研究[D];华南理工大学;2015年
2 刘凤林;基于矩阵分解的协同过滤推荐算法研究[D];南京理工大学;2015年
3 李源鑫;基于提升的信任融合矩阵分解推荐算法[D];福建师范大学;2015年
4 陈洪涛;基于矩阵分解的常规与长尾捆绑推荐的博弈研究[D];福建师范大学;2015年
5 张济龙;基于概率矩阵分解的推荐算法研究[D];燕山大学;2015年
6 邓志豪;基于物品相似度和主题回归的矩阵分解推荐算法[D];浙江大学;2015年
7 余露;利用矩阵分解算法建模数据稀疏环境下用户协同行为[D];杭州师范大学;2015年
8 倪泽明;混合用户行为建模的概率矩阵分解推荐算法[D];浙江大学;2015年
9 丁浩;基于协同矩阵分解的药物靶标相互作用关系预测[D];复旦大学;2014年
10 吴世伟;社会网络中的链接分析[D];复旦大学;2014年
,本文编号:1867009
本文链接:https://www.wllwen.com/jingjilunwen/dianzishangwulunwen/1867009.html