基于主题特征的情感分类及推荐算法研究
[Abstract]:With the development of e-commerce, more and more people choose to use the Internet for shopping, entertainment, communication and work. Users often spend a lot of time searching, browsing, and selecting goods or services. How to recommend products and services to the needs of users has become a problem that must be solved by product and service providers. However, the traditional recommendation algorithm only analyzes the relationship between the product and the user, and does not carry on the emotion analysis and the processing to the comment text, which affects the quality of the recommendation to a certain extent. From the two aspects of emotional analysis and product recommendation, the thesis realizes more accurate product recommendation to users. Firstly, from the perspective of the whole meaning of Chinese text, the topic distribution of Chinese text is obtained by using the text topic model (LDAs). In the process of feature selection and extraction, besides the feature of short text, the subject feature of short text is considered, and the emotion classification of Chinese text is realized under the framework of reserved semi-supervised learning. The experimental results show that the accuracy of text emotion classification is better than that without text theme feature. On the basis of emotion analysis and collaborative filtering of product comment text, using the definition of score similarity, the emotional similarity is put forward, and the comprehensive similarity of emotion similarity and score similarity is used to judge and select the neighboring users. Finally, a product recommendation algorithm based on emotion analysis is proposed. The affective similarity method is based on the semi-supervised learning emotion classification algorithm proposed in this paper. Compared with the traditional collaborative filtering recommendation algorithm, the experiment shows that the product recommendation algorithm based on emotion analysis is better than the traditional collaborative filtering recommendation algorithm.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.1
【相似文献】
相关期刊论文 前10条
1 徐义峰;徐云青;刘晓平;;一种基于时间序列性的推荐算法[J];计算机系统应用;2006年10期
2 余小鹏;;一种基于多层关联规则的推荐算法研究[J];计算机应用;2007年06期
3 张海玉;刘志都;杨彩;贾松浩;;基于页面聚类的推荐算法的改进[J];计算机应用与软件;2008年09期
4 张立燕;;一种基于用户事务模式的推荐算法[J];福建电脑;2009年03期
5 王晗;夏自谦;;基于蚁群算法和浏览路径的推荐算法研究[J];中国科技信息;2009年07期
6 周珊丹;周兴社;王海鹏;倪红波;张桂英;苗强;;智能博物馆环境下的个性化推荐算法[J];计算机工程与应用;2010年19期
7 王文;;个性化推荐算法研究[J];电脑知识与技术;2010年16期
8 张恺;秦亮曦;宁朝波;李文阁;;改进评价估计的混合推荐算法研究[J];微计算机信息;2010年36期
9 夏秀峰;代沁;丛丽晖;;用户显意识下的多重态度个性化推荐算法[J];计算机工程与应用;2011年16期
10 杨博;赵鹏飞;;推荐算法综述[J];山西大学学报(自然科学版);2011年03期
相关会议论文 前10条
1 王韬丞;罗喜军;杜小勇;;基于层次的推荐:一种新的个性化推荐算法[A];第二十四届中国数据库学术会议论文集(技术报告篇)[C];2007年
2 唐灿;;基于模糊用户心理模式的个性化推荐算法[A];2008年计算机应用技术交流会论文集[C];2008年
3 秦国;杜小勇;;基于用户层次信息的协同推荐算法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年
4 周玉妮;郑会颂;;基于浏览路径选择的蚁群推荐算法:用于移动商务个性化推荐系统[A];社会经济发展转型与系统工程——中国系统工程学会第17届学术年会论文集[C];2012年
5 苏日启;胡皓;汪秉宏;;基于网络的含时推荐算法[A];第五届全国复杂网络学术会议论文(摘要)汇集[C];2009年
6 梁莘q,
本文编号:2154883
本文链接:https://www.wllwen.com/jingjilunwen/dianzishangwulunwen/2154883.html