基于移动设备的室内定位与导航
[Abstract]:With the development of wireless network technology and the rapid development of modern city construction, Location Based Services (LBS) has shown tremendous vitality in many aspects, such as personal location service, medical field, electronic commerce, emergency rescue, smart home and so on. It has become a hot research topic in recent years. High-precision indoor positioning and navigation technology is the foundation and key to realize LBS. Traditional GPS (Global Positioning System) and cellular mobile communication technology have higher positioning accuracy outdoors, but GPS signals in indoor environment will be blocked, resulting in a significant reduction in positioning accuracy. Bit technology, from the deployment cost, positioning accuracy, post-maintenance, transmission speed, portability and other aspects of a comprehensive consideration, based on WiFi (Wireless Fidelity) Received Signal Strength (RSS) indoor positioning technology does not require the deployment of other hardware devices, by making full use of existing WiFi facilities, you can have any WiFi module. However, RSS is susceptible to external environment interference, which seriously affects the stability and accuracy of indoor positioning system. Simple WiFi-based positioning can not meet the accuracy requirements of indoor positioning services. Based on the analysis of the characteristics of the reception intensity of WiFi signals, an indoor localization algorithm based on information fusion is proposed. The location algorithm of WiFi position fingerprint based on RSS and Pedestrian Dead Reckoning (PDR) are fused by Kalman filter to realize the localization, and the indoor localization is realized on the intelligent mobile terminal. The main contents and innovations of this paper include: (1) the construction of three-dimensional indoor space model. The indoor space model with clear structure, good expressive ability and visual effect is the foundation of indoor LBS. Compared with outdoor environment, the complexity of indoor space structure has a great impact on indoor modeling. According to the existing indoor data files, this paper designs and constructs a three-dimensional indoor space network model based on "node-arc" structure to express the spatial attributes and topological structure of indoor space elements, which is the basis of map visualization and indoor navigation. The principle of axes extraction realizes the automatic extraction of building single-layer path and improves the efficiency of modeling. (2) An improved location fingerprint method based on RSS is proposed. WKNN (Weighted K-Nearest Neighbor) indoor localization algorithm based on WKNN (Weighted K-Nearest Neighbor) achieves more accurate indoor localization. At the same time, by using different access point (AP) selection and matching mechanism, redundant AP data is removed and AP localization subset is optimized to improve the efficiency and accuracy of localization algorithm. The algorithm presented in this paper improves the real-time performance and positioning accuracy. In the experimental environment, a location fingerprint database is created with a sampling interval of 1.5 meters, and the average positioning error is 1.68 m when six APs are used for positioning. (3) Multi-data fusion indoor real-time tracking and navigation based on Kalman filtering. In the navigation process, the location fingerprint localization algorithm based on RSS is vulnerable to the influence of indoor environment changes, there is instability and low precision in the location, and there is also irregular jumping phenomenon in the position description of moving objects; PDR algorithm can directly use the sensors of mobile devices to estimate the state of pedestrian movement. In this paper, Kalman filter is established to fuse the positioning information and smooth the trajectory, so as to achieve high precision indoor real-time dynamic positioning accuracy in the process of indoor navigation. In order to reduce the cumulative positioning error of the linear motion model at the turning point, the device barometer data is used to identify the user's upstairs and downstairs behavior in the navigation process, and the multi-floor positioning and navigation system suitable for intelligent mobile devices is realized. The average positioning error is 1.2m. Compared with PDR and WiFi, the algorithm is the most stable in cumulative error over time.
【学位授予单位】:华东师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN92
【相似文献】
相关期刊论文 前10条
1 ;室内定位蓄势待发[J];建材发展导向;2013年06期
2 赵军;李鸿斌;王智;;无线网络室内定位系统研究[J];信息与控制;2008年04期
3 梁韵基;周兴社;於志文;倪红波;;普适环境室内定位系统研究[J];计算机科学;2010年03期
4 汪苑;林锦国;;几种常用室内定位技术的探讨[J];中国仪器仪表;2011年02期
5 王丽英;;导航发展的新热点——室内定位[J];今日电子;2011年12期
6 ;卫星信号易被干扰 室内定位技术解析[J];金卡工程;2012年07期
7 李振;姚以鹏;;大型公共场馆智能室内定位导游系统的技术研究[J];广东科技;2013年12期
8 袁飞;;浅谈室内定位与机场旅客个性化服务[J];中国科技信息;2014年08期
9 张玉梅;康晓霞;;救援队员室内定位技术分析[J];消防科学与技术;2012年06期
10 杨华;刘军发;陈益强;;一种基于多终端动态协同的室内定位方法[J];计算机应用研究;2012年07期
相关会议论文 前8条
1 张立立;钟耳顺;;无线室内定位技术[A];中国地理信息系统协会第八届年会论文集[C];2004年
2 郭明涛;李文元;龚福春;;室内定位方法分析[A];2007北京地区高校研究生学术交流会通信与信息技术会议论文集(下册)[C];2008年
3 郭旭斌;叶长城;王忆文;李辉;;基于无线传感器网络的室内定位系统[A];第十五届计算机工程与工艺年会暨第一届微处理器技术论坛论文集(A辑)[C];2011年
4 房秉毅;李熹;;超宽带室内定位系统研究[A];2005年全国超宽带无线通信技术学术会议论文集[C];2005年
5 高雪晨;蒋泰;曹林峰;;基于RFID的室内定位系统设计[A];广西计算机学会2012年学术年会论文集[C];2012年
6 徐劲松;卢晓春;边玉敬;;基于UWB的室内定位系统设计与仿真[A];2009全国时间频率学术会议论文集[C];2009年
7 雷地球;罗海勇;刘晓明;;一种基于WiFi的室内定位系统设计与实现[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年
8 胡斌;宋娜娜;;基于航位推测技术的消防人员室内定位系统研究[A];2014中国消防协会科学技术年会论文集[C];2014年
相关重要报纸文章 前10条
1 本报记者 马静t,
本文编号:2180797
本文链接:https://www.wllwen.com/jingjilunwen/dianzishangwulunwen/2180797.html