基于攻击用户识别和贝叶斯概率矩阵分解的鲁棒推荐算法
[Abstract]:With the arrival of big data era and the development of electronic commerce, collaborative filtering recommendation system is gradually infiltrating people's life with its personalized recommendation advantage. However, due to the openness of the recommendation system, it is easy to cause malicious users to inject an attack profile into the recommendation system to change the recommendation result, which seriously affects the security of the recommendation system. In this paper, a robust recommendation algorithm is proposed to improve the robustness of recommendation system and ensure the accuracy of recommendation. The specific contents of the study are as follows. First of all, aiming at the problem that malicious attacks on users in recommendation system affect the robustness of recommendation system, a clustering algorithm for suspected users is proposed. The concept of average user rating popularity is introduced in this algorithm based on item popularity. Based on this concept, the formula for calculating the distance between users is redefined. The purpose of this algorithm is to cluster suspected users into a class and to facilitate the identification of attacking users. Secondly, aiming at the real user misjudgment problem in the suspect user clustering algorithm, the recommendation accuracy of the recommendation system will be affected by the real user misjudgment. Therefore, an attack user identification method based on suspect user clustering and target item identification is proposed, which can further accurately identify and mark the attack user in the suspect attack class. The algorithm first identifies the target item and then identifies and marks the target user in the suspect attack class. The purpose of the algorithm is to reduce the false judgment rate of the real user and to ensure the recommendation accuracy of the recommendation system. Then, aiming at the problem of low robustness of recommendation algorithm, a robust recommendation algorithm based on attack user identification and Bayesian probability matrix decomposition is formed by combining the result of attack user identification with Bayesian probability matrix decomposition model. In order to improve the robustness of the recommendation system, the algorithm blocks the target item score of the target user during the learning process of the model. The goal of the algorithm is to ensure the accuracy of the recommendation and improve the robustness of the recommendation system. Finally, the MovieLens 100K data set is used to simulate the simulation experiment on the Mat Lab platform, and it is compared with some classical robust recommendation algorithms. The experimental results show that the proposed algorithm can improve the robustness of recommendation and ensure the accuracy of recommendation.
【学位授予单位】:燕山大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 徐义峰;徐云青;刘晓平;;一种基于时间序列性的推荐算法[J];计算机系统应用;2006年10期
2 余小鹏;;一种基于多层关联规则的推荐算法研究[J];计算机应用;2007年06期
3 张海玉;刘志都;杨彩;贾松浩;;基于页面聚类的推荐算法的改进[J];计算机应用与软件;2008年09期
4 张立燕;;一种基于用户事务模式的推荐算法[J];福建电脑;2009年03期
5 王晗;夏自谦;;基于蚁群算法和浏览路径的推荐算法研究[J];中国科技信息;2009年07期
6 周珊丹;周兴社;王海鹏;倪红波;张桂英;苗强;;智能博物馆环境下的个性化推荐算法[J];计算机工程与应用;2010年19期
7 王文;;个性化推荐算法研究[J];电脑知识与技术;2010年16期
8 张恺;秦亮曦;宁朝波;李文阁;;改进评价估计的混合推荐算法研究[J];微计算机信息;2010年36期
9 夏秀峰;代沁;丛丽晖;;用户显意识下的多重态度个性化推荐算法[J];计算机工程与应用;2011年16期
10 杨博;赵鹏飞;;推荐算法综述[J];山西大学学报(自然科学版);2011年03期
相关会议论文 前10条
1 王韬丞;罗喜军;杜小勇;;基于层次的推荐:一种新的个性化推荐算法[A];第二十四届中国数据库学术会议论文集(技术报告篇)[C];2007年
2 唐灿;;基于模糊用户心理模式的个性化推荐算法[A];2008年计算机应用技术交流会论文集[C];2008年
3 秦国;杜小勇;;基于用户层次信息的协同推荐算法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年
4 周玉妮;郑会颂;;基于浏览路径选择的蚁群推荐算法:用于移动商务个性化推荐系统[A];社会经济发展转型与系统工程——中国系统工程学会第17届学术年会论文集[C];2012年
5 苏日启;胡皓;汪秉宏;;基于网络的含时推荐算法[A];第五届全国复杂网络学术会议论文(摘要)汇集[C];2009年
6 梁莘q,
本文编号:2182890
本文链接:https://www.wllwen.com/jingjilunwen/dianzishangwulunwen/2182890.html