基于改进权重计算的协同过滤算法研究
[Abstract]:Since the beginning of the 21st century, Internet technology has developed rapidly. With the popularity of the Internet, e-commerce has gradually risen, and network information dissemination has also been greatly developed. Personalized recommendation technology emerges as the times require. It is one of the effective ways to solve the above problems. Its function is to recommend products that users may be interested in by collecting and analyzing users'historical browsing information. As the core of the whole recommendation system, recommendation algorithm has become a hot research direction in recent years, because the recommendation results are closely related to the performance of the recommendation algorithm. The techniques and algorithms used to personalize the recommendation requirements are complex and varied. At present, there are about four kinds of recommendation algorithms: content-based recommendation algorithm, collaborative filtering recommendation algorithm, hybrid recommendation algorithm and network recommendation algorithm. One of the more successful technologies in the field of application is to use collective wisdom to discover a small number of users with similar interests and hobbies, namely "neighbors". According to the analysis and recording of other content that these "neighbors" like, a catalog with ranking is generated, which we call recommendation results, and recommendation results are obtained. Pushing to this group of users reduces the workload of the user's "selection" process to a certain extent. The traditional collaborative filtering algorithm does not consider such factors as user's behavior time or the same label between items in the similarity calculation, but directly uses the user's score for similarity. Sexual computing, which exposes such as cold start-up problems, sparse matrix problems, recommendation scalability problems, and so on, leads to the recommendation results are not accurate enough to meet the actual needs of users. This study is based on the Project-based Collaborative Filtering algorithm, the user behavior time and the project itself. Information such as tag attributes is included in similarity calculation to improve the cold start problem of new users or new products, and then improve the quality of recommendation results, satisfy the actual needs of different users as much as possible, and realize personalized recommendation service. The behavior time generated by news, short video and other information is introduced into the data set. When calculating the similarity between items, the time factor is integrated into the heat score of resource heat through the pretreatment of time attenuation function, and then the item-based collaborative filtering recommendation is carried out. Secondly, the new items are not suitable for the new ones. Recommended weights are used to introduce short video labels into similarity computation by using the tagging feature of short video items. Since short video labels are pre-defined before publishing, the spatial cosine similarity (Cosine Similarity) of the labels is calculated after extracting the short video labels. Finally, an experimental scheme is designed based on the user's log of the actual implementation of the information APP. The proposed scheme is validated by comparing the recommendation results of the classical collaborative filtering algorithm with the improved collaborative filtering algorithm. Experimental results show that the improved collaborative filtering algorithm improves the cold start problem of new users or new products, and the recommendation accuracy is improved to a certain extent.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 徐义峰;陈春明;徐云青;;一种基于分类的协同过滤算法[J];计算机系统应用;2007年01期
2 杨风召;;一种基于特征表的协同过滤算法[J];计算机工程与应用;2007年06期
3 王岚;翟正军;;基于时间加权的协同过滤算法[J];计算机应用;2007年09期
4 曾子明;张李义;;基于多属性决策和协同过滤的智能导购系统[J];武汉大学学报(工学版);2008年02期
5 张富国;;用户多兴趣下基于信任的协同过滤算法研究[J];小型微型计算机系统;2008年08期
6 侯翠琴;焦李成;张文革;;一种压缩稀疏用户评分矩阵的协同过滤算法[J];西安电子科技大学学报;2009年04期
7 廖新考;;基于用户特征和项目属性的混合协同过滤推荐[J];福建电脑;2010年07期
8 沈磊;周一民;李舟军;;基于心理学模型的协同过滤推荐方法[J];计算机工程;2010年20期
9 徐红;彭黎;郭艾寅;徐云剑;;基于用户多兴趣的协同过滤策略改进研究[J];计算机技术与发展;2011年04期
10 焦晨斌;王世卿;;基于模型填充的混合协同过滤算法[J];微计算机信息;2011年11期
相关会议论文 前10条
1 沈杰峰;杜亚军;唐俊;;一种基于项目分类的协同过滤算法[A];第二十二届中国数据库学术会议论文集(技术报告篇)[C];2005年
2 周军锋;汤显;郭景峰;;一种优化的协同过滤推荐算法[A];第二十一届中国数据库学术会议论文集(研究报告篇)[C];2004年
3 董全德;;基于双信息源的协同过滤算法研究[A];全国第20届计算机技术与应用学术会议(CACIS·2009)暨全国第1届安全关键技术与应用学术会议论文集(上册)[C];2009年
4 张光卫;康建初;李鹤松;刘常昱;李德毅;;面向场景的协同过滤推荐算法[A];中国系统仿真学会第五次全国会员代表大会暨2006年全国学术年会论文集[C];2006年
5 李建国;姚良超;汤庸;郭欢;;基于认知度的协同过滤推荐算法[A];第26届中国数据库学术会议论文集(B辑)[C];2009年
6 王明文;陶红亮;熊小勇;;双向聚类迭代的协同过滤推荐算法[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年
7 胡必云;李舟军;王君;;基于心理测量学的协同过滤相似度方法(英文)[A];NDBC2010第27届中国数据库学术会议论文集(B辑)[C];2010年
8 林丽冰;师瑞峰;周一民;李月雷;;基于双聚类的协同过滤推荐算法[A];2008'中国信息技术与应用学术论坛论文集(一)[C];2008年
9 罗喜军;王韬丞;杜小勇;刘红岩;何军;;基于类别的推荐——一种解决协同推荐中冷启动问题的方法[A];第二十四届中国数据库学术会议论文集(研究报告篇)[C];2007年
10 黄创光;印鉴;汪静;刘玉葆;王甲海;;不确定近邻的协同过滤推荐算法[A];NDBC2010第27届中国数据库学术会议论文集A辑一[C];2010年
相关博士学位论文 前10条
1 纪科;融合上下文信息的混合协同过滤推荐算法研究[D];北京交通大学;2016年
2 程殿虎;基于协同过滤的社会网络推荐系统关键技术研究[D];中国海洋大学;2015年
3 于程远;基于QoS的Web服务推荐技术研究[D];上海交通大学;2015年
4 李聪;电子商务推荐系统中协同过滤瓶颈问题研究[D];合肥工业大学;2009年
5 郭艳红;推荐系统的协同过滤算法与应用研究[D];大连理工大学;2008年
6 罗恒;基于协同过滤视角的受限玻尔兹曼机研究[D];上海交通大学;2011年
7 薛福亮;电子商务协同过滤推荐质量影响因素及其改进机制研究[D];天津大学;2012年
8 高e,
本文编号:2212181
本文链接:https://www.wllwen.com/jingjilunwen/dianzishangwulunwen/2212181.html